首页> 外文期刊>Set-Valued and Variational Analysis >Relaxed Derivatives and Extremality Conditions in Optimal Control
【24h】

Relaxed Derivatives and Extremality Conditions in Optimal Control

机译:最优控制中的松弛导数和极值条件

获取原文
获取原文并翻译 | 示例

摘要

In previous work dating back to the early 1970’s F.H. Clarke and the author had independently derived necessary conditions for minimum including a maximum principle for optimal control problems defined by ordinary differential equations in which the right hand side f(t,·, r) and functions defining side conditions are Lipschitz continuous in their dependence on the state variable. Our results, though not the methods, were similar in the formulation of the maximum principle in which the nonexisting derivative f v (t, v, σ) was replaced by an unknown element of Clarke’s generalized Jacobian but differed in handling some side conditions. In the present paper we exhibit a maximum principle in which the dual variables and the related functions are limits of appropriate subsequences of computable sequences.
机译:在早于1970年代早期的FH Clarke的工作中,作者独立地得出了最小值的必要条件,其中包括由常微分方程定义的最优控制问题的最大原理,其中右手边f(t,·,r)和函数定义边条件的Lipschitz对状态变量的依赖性是连续的。我们的结果(虽然不是方法)在最大原理的表述中是相似的,其中不存在的导数fv (t,v,σ)被Clarke广义Jacobian的未知元素代替,但在处理某些方面时有所不同条件。在本文中,我们展示了一个最大原理,其中对偶变量和相关函数是可计算序列的适当子序列的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号