首页> 外文期刊>Services Computing, IEEE Transactions on >Category-Aware API Clustering and Distributed Recommendation for Automatic Mashup Creation
【24h】

Category-Aware API Clustering and Distributed Recommendation for Automatic Mashup Creation

机译:用于自动混搭创建的类别感知API群集和分布式建议

获取原文
获取原文并翻译 | 示例

摘要

Mashup has emeraged as a promising way to allow developers to compose existed APIs (services) to create new or value-added services. With the rapid increasing number of services published on the Internet, service recommendation for automatic mashup creation gains a lot of momentum. Since mashup inherently requires services with different functions, the recommendation result should contain services from various categories. However, most existing recommendation approaches only rank all candidate services in a single list, which has two deficiencies. First, ranking services without considering to which categories they belong may lead to meaningless service ranking and affect the recommendation accuracy. Second, mashup developers are not always clear about which service categories they need and services in which categories cooperate better for mashup creation. Without explicitly recommending which service categories are relevant for mashup creation, it remains difficult for mashup developers to select proper services in a mixed ranking list, which lower the user friendliness of recommendation. To overcome these deficiencies, a novel category-aware service clustering and distributed recommending method is proposed for automatic mashup creation. First, () method based on topic model Latent Dirichlet Allocation is introduced for enhancing service categorization and providing a basis for recommendation. Second, on top of , a () model, which combines machine learning and collaborative filtering, is developed to decompose mashup requirements and explicitly predict relevant service categories. Finally, () model, which is based on a distributed machine learning framework, is developed for predicting service ranking order within each ca- egory. Experiments on a real-world dataset have proved that the proposed approach not only gains significant improvement at precision rate but also enhances the diversity of recommendation results.
机译:混搭已经成为允许开发人员组合现有的API(服务)以创建新的或增值服务的有前途的方法。随着Internet上发布的服务数量迅速增加,用于自动混搭创建的服务推荐获得了巨大的动力。由于混搭本质上要求服务具有不同的功能,因此推荐结果应包含各种类别的服务。但是,大多数现有的推荐方法仅将所有候选服务排列在一个列表中,这有两个缺陷。首先,在不考虑服务所属类别的情况下对服务进行排名可能会导致无意义的服务排名并影响推荐准确性。其次,mashup开发人员并不总是清楚他们需要哪些服务类别以及哪些类别中的服务可以更好地协作以创建mashup。如果没有明确建议与混搭创建相关的服务类别,混搭开发人员仍然很难在混合排名列表中选择适当的服务,从而降低了推荐的用户友好度。为了克服这些不足,提出了一种新颖的类别感知服务聚类和分布式推荐方法,用于自动混搭创建。首先,引入了基于主题模型的潜在狄利克雷分配方法,以增强服务分类并为推荐提供依据。其次,在之上,开发了一种将机器学习和协作过滤相结合的()模型,以分解混搭需求并明确预测相关的服务类别。最后,开发了一种基于分布式机器学习框架的()模型,用于预测每个类别内的服务排名顺序。在真实数据集上的实验证明,该方法不仅在准确率上获得了显着提高,而且增强了推荐结果的多样性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号