首页> 外文期刊>Services Computing, IEEE Transactions on >Online Virtual Machine Placement for Increasing Cloud Provider’s Revenue
【24h】

Online Virtual Machine Placement for Increasing Cloud Provider’s Revenue

机译:在线虚拟机放置以增加云提供商的收入

获取原文
获取原文并翻译 | 示例

摘要

Cost savings have become a significant challenge in the management of data centers. In this paper, we show that, besides energy consumption, service level agreement (SLA) violations also severely degrade the cost-efficiency of data centers. We present online VM placement algorithms for increasing cloud provider’s revenue. First, First-Fit and Harmonic algorithm are devised for VM placement without considering migrations. Both algorithms get the same performance in the worst-case analysis, and equal to the lower bound of the competitive ratio. However, Harmonic algorithm could create more revenue than First-Fit by more than 10 percent when job arriving rate is greater than 1.0. Second, we formulate an optimization problem of maximizing revenue from VM migration, and prove it as NP-Hard by a reduction from 3-Partition problem. Therefore, we propose two heuristics: Least-Reliable-First (LRF) and Decreased-Density-Greedy (DDG). Experiments demonstrate that DDG yields more revenue than LRF when migration cost is low, yet leads to losses when SLA penalty is low or job arriving rate is high, due to the large number of migrations. Finally, we compare the four algorithms above with algorithms adopted in Openstack using a real trace, and find that the results are consistent with the ones using synthetic data.
机译:节省成本已成为数据中心管理中的重大挑战。在本文中,我们表明,除了能耗之外,违反服务水平协议(SLA)还会严重降低数据中心的成本效率。我们提出了在线VM放置算法,以增加云提供商的收入。首先,First-Fit和Harmonic算法是为VM放置而设计的,无需考虑迁移。两种算法在最坏情况下的分析都具有相同的性能,并且等于竞争比率的下限。但是,当工作到达率大于1.0时,Harmonic算法可以创造比First-Fit多10%的收入。其次,我们提出了一个最大化虚拟机迁移收益的优化问题,并通过减少3分区问题将其证明为NP-Hard。因此,我们提出了两种启发式方法:最小可靠优先(LRF)和降低密度贪婪(DDG)。实验表明,在迁移成本较低的情况下,DDG的收入要高于LRF,而在SLA罚款较低或工作到达率较高的情况下,由于迁移大量,DDG会造成损失。最后,我们将上述四种算法与Openstack中使用真实跟踪的算法进行了比较,发现结果与使用综合数据的结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号