首页> 外文期刊>Services Computing, IEEE Transactions on >CASR-TSE: Context-Aware Web Services Recommendation for Modeling Weighted Temporal-Spatial Effectiveness
【24h】

CASR-TSE: Context-Aware Web Services Recommendation for Modeling Weighted Temporal-Spatial Effectiveness

机译:CASR-TSE:背景感知Web服务建议,用于建模加权时间空间效果

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed the growing research interest in the Context-Aware Recommender System (CARS). CARS for Web service provides opportunities for exploring the important role of temporal and spatial contexts, separately. Although many CARS approaches have been investigated in recent years, they do not fully address the potential of temporal-spatial correlations in order to make personalized recommendation. In this paper, the Context-Aware Services Recommendation based on Temporal-Spatial Effectiveness (named CASR-TSE) method is proposed. We first model the effectiveness of spatial correlations between the user's location and the service's location on user preference expansion before the similarity computation. Second, we present an enhanced temporal decay model considering the weighted rating effect in the similarity computation to improve the prediction accuracy. Finally, we evaluate the CASR-TSE method on a real-world Web services dataset. Experimental results show that the proposed method significantly outperforms existing approaches, and thus it is much more effective than traditional recommendation techniques for personalized Web service recommendation.
机译:近年来,目睹了在环境知识推荐系统(汽车)中越来越多的研究兴趣。用于Web服务的汽车提供了探索时间和空间环境的重要作用的机会。虽然近年来已经调查了许多汽车方法,但它们并没有完全解决时间空间相关性的潜力,以便进行个性化推荐。本文提出了基于时间空间效能(命名CASR-TSE)方法的上下文感知服务推荐。我们首先在相似性计算之前模拟用户位置与服务的位置之间的空间相关性的有效性。其次,考虑相似性计算中的加权额定值效应来提高一个增强的时间衰减模型以提高预测精度。最后,我们在真实世界的Web服务数据集中评估Casr-TSE方法。实验结果表明,该方法明显优于现有的方法,因此比个性化Web服务推荐的传统推荐技术更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号