首页> 外文期刊>Expert Systems with Application >Context-aware QoS prediction for web service recommendation and selection
【24h】

Context-aware QoS prediction for web service recommendation and selection

机译:用于Web服务推荐和选择的上下文感知QoS预测

获取原文
获取原文并翻译 | 示例

摘要

QoS prediction is one of the key problems in Web service recommendation and selection. The context information is a dominant factor affecting QoS, but is ignored by most of existing works. In this paper, we employ the context information, from both the user side and service side, to achieve superior QoS prediction accuracy. We propose two novel prediction models, which are capable of using the context information of users and services respectively. In the user side, we use the geographical information as the user context, and identify similar neighbors for each user based on the similarity of their context. We study the mapping relationship between the similarity value and the geographical distance. In the service side, we use the affiliation information as the service context, including the company affiliation and country affiliation. In the two models, the prediction value is learned by the QoS records of a user (or a service) and the neighbors. Also, we propose an ensemble model to combine the results of the two models. We conduct comprehensive experiments in two real-world datasets, and the experimental results demonstrate the effectiveness of our models. (C) 2016 Elsevier Ltd. All rights reserved.
机译:QoS预测是Web服务推荐和选择中的关键问题之一。上下文信息是影响QoS的主要因素,但大多数现有工作都忽略了它。在本文中,我们从用户端和服务端使用上下文信息,以实现卓越的QoS预测精度。我们提出了两种新颖的预测模型,它们能够分别使用用户和服务的上下文信息。在用户方面,我们将地理信息用作用户上下文,并根据他们的上下文的相似性为每个用户标识相似的邻居。我们研究了相似度值与地理距离之间的映射关系。在服务方面,我们使用隶属关系信息作为服务上下文,包括公司隶属关系和国家/地区隶属关系。在这两个模型中,预测值是通过用户(或服务)和邻居的QoS记录学习的。此外,我们提出了一个集成模型来组合两个模型的结果。我们在两个现实世界的数据集中进行了综合实验,实验结果证明了我们模型的有效性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号