首页> 外文期刊>Sequential analysis >Vertically Weighted Averages in Hilbert Spaces and Applications to Imaging: Fixed-Sample Asymptotics and Efficient Sequential Two-Stage Estimation
【24h】

Vertically Weighted Averages in Hilbert Spaces and Applications to Imaging: Fixed-Sample Asymptotics and Efficient Sequential Two-Stage Estimation

机译:希尔伯特空间中的垂直加权平均值及其在成像中的应用:固定样本渐近性和有效的连续两阶段估计

获取原文
获取原文并翻译 | 示例

摘要

We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage confidence intervals. Those vertically weighted averages represent a class of nonlinear smoothers that are commonly applied to denoise observations without corrupting details (such as jumps in a time series or object boundaries in an image), detect those details, and design segmentation procedures. In addition to their extensive use in imaging, they have been also successfully applied in signal processing and financial data analysis. This article extends this approach to general functional data taking values in a Hilbert space and establishes the related asymptotic distribution theory in terms of central limit theorems and their sequential generalizations. In addition, focusing on real-valued data, the problems of variance estimation by the jackknife and two-stage estimation are studied. We show that the jackknife is consistent and asymptotically unbiased, thus providing an easy-to-use approach to evaluate the estimator's precision. Because the inhomogeneous variance of vertically weighted averages is a drawback when denoising data, we study the construction of fixed-width confidence intervals based on a two-stage sampling procedure in the spirit of Stein's (1945) seminal article. The proposed procedure can be shown to be consistent for the asymptotic optimal fixed-sample solution as well as asymptotically first-order efficient.
机译:我们讨论了垂直加权平均值的固定样本渐近线和折刀方差估计以及相关的连续两阶段置信区间的构造。这些垂直加权的平均值表示一类非线性平滑器,通常用于对观测值进行降噪而不会破坏细节(例如,时间序列中的跳跃或图像中的对象边界),检测到这些细节以及设计分割过程。除了在成像中广泛使用外,它们还已成功应用于信号处理和财务数据分析中。本文将这种方法扩展到在希尔伯特空间中获取值的一般函数数据,并根据中心极限定理和它们的顺序概括建立了相关的渐近分布理论。此外,针对实值数据,研究了折刀和两阶段估计的方差估计问题。我们证明了折刀是一致且渐近无偏的,从而提供了一种易于使用的方法来评估估算器的精度。因为在对数据进行去噪时垂直加权平均值的不均匀方差是一个缺点,所以我们根据Stein(1945)开创性文章的精神研究了基于两阶段采样程序的固定宽度置信区间的构造。对于渐近最优固定样本解以及渐近一阶有效算法,所提出的过程可以证明是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号