首页> 外文期刊>Sensors Journal, IEEE >Touch Position Detection in Electrical Tomography Tactile Sensors Through Quadratic Classifier
【24h】

Touch Position Detection in Electrical Tomography Tactile Sensors Through Quadratic Classifier

机译:二次分类器在电子层析成像触觉传感器中的触摸位置检测

获取原文
获取原文并翻译 | 示例

摘要

Traditional electrical tomography tactile sensors consider the usage of the system’s finite element model. This approach brings disadvantages that jeopardize their applicability aspect and wide use. To address this limitation, the main thrust of this paper is to present a method for touch position identification for an electrical tomography flexible tactile sensor. This is done by using a supervised machine learning algorithm for performing classification, namely quadratic discriminant analysis. This approach provides accurate contact location identification, increasing the detection speed and the sensor versatility when compared with traditional electrical tomography approaches. Results obtained show classification accuracy rates of up to 91.6% on unseen test data and an average Euclidean error ranging from 1 to 10 mm depending on the contact location over the sensor. The sensor is then applied in real case scenarios to show its efficiency. These outcomes are encouraging since they promote the future practical usage of flexible and low-cost sensors.
机译:传统的电子断层扫描触觉传感器会考虑使用系统的有限元模型。这种方法带来了不利于其适用性和广泛使用的缺点。为了解决这个限制,本文的主要目的是提出一种用于电子断层扫描柔性触觉传感器的触摸位置识别方法。这是通过使用监督的机器学习算法进行分类(即二次判别分析)来完成的。与传统的电子层析成像方法相比,此方法可提供准确的接触位置识别,从而提高检测速度和传感器的多功能性。获得的结果显示,在看不见的测试数据上的分类准确率高达91.6%,并且根据传感器上的接触位置,平均欧几里德误差为1至10 mm。然后将传感器应用于实际案例中以显示其效率。这些结果令人鼓舞,因为它们促进了未来柔性和低成本传感器的实际使用。

著录项

  • 来源
    《Sensors Journal, IEEE》 |2019年第2期|474-483|共10页
  • 作者单位

    School of Computing Sciences and Engineering, University of Salford, Greater Manchester, U.K.;

    School of Computing Sciences and Engineering, University of Salford, Greater Manchester, U.K.;

    Information Engineering Department, Enrico Piaggio Research Center, University of Pisa, Pisa, Italy;

    Information Engineering Department, Enrico Piaggio Research Center, University of Pisa, Pisa, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tomography; Tactile sensors; Electrodes; Sensor systems; Fabrics;

    机译:层析成像;触觉传感器;电极;传感器系统;织物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号