首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Detecting Dominant Motions in Dense Crowds
【24h】

Detecting Dominant Motions in Dense Crowds

机译:检测密集人群中的主导运动

获取原文
获取原文并翻译 | 示例

摘要

We discuss the problem of detecting dominant motions in dense crowds, a challenging and societally important problem. First, we survey the general literature of computer vision algorithms that deal with crowds of people, including model- and feature-based approaches to segmentation and tracking as well as algorithms that analyze general motion trends. Second, we present a system for automatically identifying dominant motions in a crowded scene. Accurately tracking individual objects in such scenes is difficult due to inter- and intra-object occlusions that cannot be easily resolved. Our approach begins by independently tracking low-level features using optical flow. While many of the feature point tracks are unreliable, we show that they can be clustered into smooth dominant motions using a distance measure for feature trajectories based on longest common subsequences. Results on real video sequences demonstrate that the approach can successfully identify both dominant and anomalous motions in crowded scenes. These fully-automatic algorithms could be easily incorporated into distributed camera networks for autonomous scene analysis.
机译:我们讨论了在密集人群中检测主导运动的问题,这是一个具有挑战性且在社会上很重要的问题。首先,我们调查了处理人群的计算机视觉算法的一般文献,包括基于模型和特征的分割和跟踪方法以及分析总体运动趋势的算法。其次,我们提出了一种在拥挤的场景中自动识别主导运动的系统。由于无法轻松解决物体间和物体内的遮挡,因此很难在此类场景中准确跟踪单个物体。我们的方法开始于使用光流独立跟踪低层特征。尽管许多特征点轨迹不可靠,但我们表明可以使用基于最长共同子序列的特征轨迹距离测量将它们聚类为平滑的主导运动。真实视频序列上的结果表明,该方法可以成功识别拥挤场景中的主导运动和异常运动。这些全自动算法可轻松集成到分布式摄像机网络中,以进行自主场景分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号