首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Context-Adaptive Information Flow Allocation and Media Delivery in Online Social Networks
【24h】

Context-Adaptive Information Flow Allocation and Media Delivery in Online Social Networks

机译:在线社交网络中的上下文自适应信息流分配和媒体传递

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates context-driven flow allocation and media delivery in online social networks. We exploit information on contacts and content preferences found in social networking applications to provide efficient network services and operation at the underlying transport layer. We formulate a linear programming framework that maximizes the information flow–cost ratio of the transport network serving the nodes in the social graph. For practical deployments, we also design a distributed version of the optimization framework that provides similar performance to its centralized counterpart, with lower complexity. In addition, we devise a tracker-based system for efficient content discovery in peer-to-peer (P2P) systems based on social network information. Finally, we design a context-aware packet scheduling technique that maximizes the utility of media delivery among the members of the social network. We provide a comprehensive investigation of the performance of our optimization strategies through both simulations and analysis. We demonstrate their significant advantages over several performance factors relative to conventional solutions that do not employ social network information in their operation.
机译:本文研究了在线社交网络中上下文驱动的流分配和媒体传递。我们利用在社交网络应用程序中发现的有关联系人和内容偏好的信息来提供有效的网络服务和底层传输层的操作。我们制定了一个线性规划框架,该框架将为社会图中的节点提供服务的运输网络的信息流成本比最大化。对于实际部署,我们还设计了优化框架的分布式版本,该分布式框架可提供与集中式同类框架类似的性能,并且复杂度较低。此外,我们设计了一种基于跟踪器的系统,用于基于社交网络信息在对等(P2P)系统中进行有效的内容发现。最后,我们设计了一种上下文感知的数据包调度技术,该技术可最大程度地提高社交网络成员之间媒体传递的效用。通过仿真和分析,我们对优化策略的性能进行了全面调查。相对于在操作中未使用社交网络信息的常规解决方案,我们证明了它们在几个性能指标上的显着优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号