首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples
【24h】

Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples

机译:使用相对较少的含信号样本和纯噪声样本,基于样本基于特征值的广义特征值检测的基本极限

获取原文
获取原文并翻译 | 示例

摘要

The detection problem in statistical signal processing can be succinctly formulated: given $m$ (possibly) signal bearing, $n$ -dimensional signal-plus-noise snapshot vectors (samples) and $N$ statistically independent $n$-dimensional noise-only snapshot vectors, can one reliably infer the presence of a signal? This problem arises in the context of applications as diverse as radar, sonar, wireless communications, bioinformatics, and machine learning and is the critical first step in the subsequent signal parameter estimation phase. The signal detection problem can be naturally posed in terms of the sample generalized eigenvalues. The sample generalized eigenvalues correspond to the eigenvalues of the matrix formed by “whitening” the signal-plus-noise sample covariance matrix with the noise-only sample covariance matrix. In this paper, we prove a fundamental asymptotic limit of sample generalized eigenvalue-based detection of signals in arbitrarily colored noise when there are relatively few signal bearing and noise-only samples. Specifically, we show why when the (eigen) signal-to-noise ratio (SNR) is below a critical value, that is a simple function of $n$ , $m$, and $N$, then reliable signal detection, in an asymptotic sense, is not possible. If, however, the eigen-SNR is above this critical value then a simple, new random matrix theory-based algorithm, which we present here, will reliably detect the signal even at SNRs close to the critical value. Numerical simulations highlight the accu-n-nracy of our analytical prediction, permit us to extend our heuristic definition of the effective number of identifiable signals in colored noise and display the dramatic improvement in performance relative to the classical estimator by Zhao We discuss implications of our result for the detection of weak and/or closely spaced signals in sensor array processing, abrupt change detection in sensor networks, and clustering methodologies in machine learning.
机译:统计信号处理中的检测问题可以简洁地表述:给定$ m $(可能)信号方位,$ n $-维信号加噪声快照向量(样本)和$ N $统计独立的$ n $维噪声-只有快照向量,才能可靠地推断出信号的存在吗?这个问题出现在雷达,声纳,无线通信,生物信息学和机器学习等各种各样的应用环境中,并且是后续信号参数估计阶段中至关重要的第一步。信号检测问题自然可以根据样本广义特征值提出。样本广义特征值对应于通过“加白”信号加噪声样本协方差矩阵和纯噪声样本协方差矩阵而形成的矩阵的特征值。在本文中,我们证明了当信号样本和纯噪声样本相对较少时,基于样本基于特征值的样本广义特征值检测的基本渐近极限。具体来说,我们说明了为什么当(本征)信噪比(SNR)低于临界值时,即$ n $,$ m $和$ N $的简单函数,然后进行可靠的信号检测,渐近的感觉是不可能的。但是,如果本征SNR高于此临界值,那么即使在SNR接近临界值的情况下,我们在此介绍的基于简单随机矩阵理论的简单新算法也将可靠地检测信号。数值模拟突出了我们的分析预测的准确性,使我们能够扩展对彩色噪声中可识别信号的有效数量的启发式定义,并显示出相对于Zhao的经典估计器而言性能的显着改善。在传感器阵列处理中检测弱和/或紧密间隔的信号,传感器网络中的突变检测以及机器学习中的聚类方法的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号