首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >An Extreme Function Theory for Novelty Detection
【24h】

An Extreme Function Theory for Novelty Detection

机译:一种用于新颖性检测的极限函数理论

获取原文
获取原文并翻译 | 示例

摘要

We introduce an extreme function theory as a novel method by which probabilistic novelty detection may be performed with functions, where the functions are represented by time-series of (potentially multivariate) discrete observations. We set the method within the framework of Gaussian processes (GP), which offers a convenient means of constructing a distribution over functions. Whereas conventional novelty detection methods aim to identify individually extreme data points, with respect to a model of normality constructed using examples of “normal” data points, the proposed method aims to identify extreme functions, with respect to a model of normality constructed using examples of “normal” functions, where those functions are represented by time-series of observations. The method is illustrated using synthetic data, physiological data acquired from a large clinical trial, and a benchmark time-series dataset.
机译:我们引入极限函数理论作为一种新颖的方法,通过该方法可以对函数执行概率新奇检测,其中函数由(潜在的多元变量)离散观测的时间序列表示。我们在高斯过程(GP)的框架内设置了该方法,该方法提供了一种构造函数分布的便捷方法。传统的新颖性检测方法旨在针对使用“正常”数据点示例构建的正常模型分别识别极端数据点,而提出的方法旨在针对针对使用“示例性”数据点示例构建的正常模型识别极端函数。 “正常”功能,其中这些功能由观察的时间序列表示。使用合成数据,从大型临床试验中获取的生理数据以及基准时间序列数据集说明了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号