首页> 外文期刊>Mathematical Problems in Engineering >Outlier Detection in Adaptive Functional-Coefficient Autoregressive Models Based on Extreme Value Theory
【24h】

Outlier Detection in Adaptive Functional-Coefficient Autoregressive Models Based on Extreme Value Theory

机译:基于极值理论的自适应功能系数自回归模型中的异常值检测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes several test statistics to detect additive or innovative outliers in adaptive functional-coefficient autoregressive (AFAR) models based on extreme value theory and likelihood ratio tests. All the test statistics follow a tractable asymptotic Gumbel distribution. Also, we propose an asymptotic critical value on a fixed significance level and obtain an asymptotic p-value for testing, which is used to detect outliers in time series. Simulation studies indicate that the extreme value method for detecting outliers in AFAR models is effective both for AO and IO, for a lone outlier and multiple outliers, and for separate outliers and outlier patches. Furthermore, it is shown that our procedure can reduce possible effects of masking and swamping.
机译:本文提出了几种测试统计数据,以基于极值理论和似然比检验来检测自适应功能系数自回归(AFAR)模型中的累加或创新离群值。所有的检验统计量都遵循易于处理的渐近Gumbel分布。此外,我们提出了一个固定的显着性水平上的渐近临界值,并获得了用于测试的渐近p值,该值用于检测时间序列中的离群值。仿真研究表明,在AFAR模型中检测异常值的极值方法对于AO和IO,单个异常值和多个异常值以及单独的异常值和异常值补丁都是有效的。此外,表明我们的程序可以减少掩蔽和沼泽化的可能影响。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第4期|910828.1-910828.9|共9页
  • 作者单位

    Department of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China;

    School of Finance and Statistics, East China Normal University, Shanghai 200241, China;

    Department of Industrial Engineering and Operations Research, Columbia University, New York, NY 10027, USA;

    Department of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号