首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Learning Discriminative Sparse Representations for Hyperspectral Image Classification
【24h】

Learning Discriminative Sparse Representations for Hyperspectral Image Classification

机译:学习判别式稀疏表示形式的高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

In sparse representation (SR) driven hyperspectral image classification, signal-to-reconstruction rule-based classification may lack generalization performance. In order to overcome this limitation, we presents a new method for discriminative sparse representation of hyperspectral data by learning a reconstructive dictionary and a discriminative classifier in a SR model regularized with total variation (TV). The proposed method features the following components. First, we adopt a spectral unmixing by variable splitting augmented Lagrangian and TV method to guarantee the spatial homogeneity of sparse representations. Second, we embed dictionary learning in the method to enhance the representative power of sparse representations via gradient descent in a class-wise manner. Finally, we adopt a sparse multinomial logistic regression (SMLR) model and design a class-oriented optimization strategy to obtain a powerful classifier, which improves the performance of the learnt model for specific classes. The first two components are beneficial to produce discriminative sparse representations. Whereas, adopting SMLR allows for effectively modeling the discriminative information. Experimental results with both simulated and real hyperspectral data sets in a number of experimental comparisons with other related approaches demonstrate the superiority of the proposed method.
机译:在稀疏表示(SR)驱动的高光谱图像分类中,基于信号重构规则的分类可能缺乏泛化性能。为了克服这一局限性,我们提出了一种新方法,该方法通过学习以总变化量(TV)归一化的SR模型中的重建词典和判别式分类器来区分高光谱数据的稀疏表示。所提出的方法具有以下组成部分。首先,我们通过可变分裂增强拉格朗日和电视方法采用频谱分解,以确保稀疏表示的空间均匀性。其次,我们将字典学习嵌入到该方法中,以通过逐级梯度下降来增强稀疏表示的代表性。最后,我们采用稀疏多项式逻辑回归(SMLR)模型,并设计了一种面向类的优化策略以获得强大的分类器,从而提高了学习模型对特定类的性能。前两个组件有利于产生区别性的稀疏表示。鉴于采用SMLR可以有效地建模区分性信息。在与其他相关方法进行的大量实验比较中,使用模拟和真实高光谱数据集进行的实验结果证明了该方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号