首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Tensor CP Decomposition With Structured Factor Matrices: Algorithms and Performance
【24h】

Tensor CP Decomposition With Structured Factor Matrices: Algorithms and Performance

机译:具有结构因子矩阵的Tensor CP分解:算法和性能

获取原文
获取原文并翻译 | 示例

摘要

The canonical polyadic decomposition (CPD) of high-order tensors, also known as Candecomp/Parafac, is very useful for representing and analyzing multidimensional data. This paper considers a CPD model having structured matrix factors, as e.g. Toeplitz, Hankel or circulant matrices, and studies its associated estimation problem. This model arises in signal processing applications such as Wiener-Hammerstein system identification and cumulant-based wireless communication channel estimation. After introducing a general formulation of the considered structured CPD (SCPD), we derive closed-form expressions for the Cramér-Rao bound (CRB) of its parameters under the presence of additive white Gaussian noise. Formulas for special cases of interest, as when the CPD contains identical factors, are also provided. Aiming at a more relevant statistical evaluation from a practical standpoint, we discuss the application of our formulas in a Bayesian context, where prior distributions are assigned to the model parameters. Three existing algorithms for computing SCPDs are then described: a constrained alternating least squares (CALS) algorithm, a subspace-based solution and an algebraic solution for SCPDs with circulant factors. Subsequently, we present three numerical simulation scenarios, in which several specialized estimators based on these algorithms are proposed for concrete examples of SCPD involving circulant factors. In particular, the third scenario concerns the identification of a Wiener-Hammerstein system via the SCPD of an associated Volterra kernel. The statistical performance of the proposed estimators is assessed via Monte Carlo simulations, by comparing their Bayesian mean-square error with the expected CRB.
机译:高阶张量的规范多态分解(CPD),也称为Candecomp / Parafac,对于表示和分析多维数据非常有用。本文考虑了具有结构化矩阵因子的CPD模型,例如Toeplitz,Hankel或循环矩阵,并研究其相关的估计问题。此模型出现在信号处理应用程序中,例如Wiener-Hammerstein系统识别和基于累积量的无线通信信道估计。引入考虑的结构化CPD(SCPD)的一般公式后,我们在存在加性高斯白噪声的情况下,推导了其参数的Cramér-Rao界(CRB)的闭式表达式。还提供了一些特殊情况下的公式,例如CPD包含相同的因子。从实践的角度出发,针对更相关的统计评估,我们讨论了在贝叶斯上下文中应用公式的情况,其中先验分布被分配给模型参数。然后介绍了三种现有的计算SCPD的算法:约束交替最小二乘(CALS)算法,基于子空间的解决方案和具有循环因子的SCPD的代数解决方案。随后,我们提出了三种数值模拟方案,其中针对这些涉及循环因子的SCPD实例,提出了几种基于这些算法的专门估计器。特别地,第三种情况涉及通过关联的Volterra内核的SCPD识别Wiener-Hammerstein系统。通过将它们的贝叶斯均方误差与预期的CRB进行比较,通过蒙特卡洛模拟评估了估计的估计量的统计性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号