首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Spoken Term Detection Automatically Adjusted for a Given Threshold
【24h】

Spoken Term Detection Automatically Adjusted for a Given Threshold

机译:针对给定的阈值自动调整了语音术语检测

获取原文
获取原文并翻译 | 示例

摘要

Spoken term detection (STD) is the task of determining whether and where a given word or phrase appears in a given segment of speech. Algorithms for STD are often aimed at maximizing the gap between the scores of positive and negative examples. As such they are focused on ensuring that utterances where the term appears are ranked higher than utterances where the term does not appear. However, they do not determine a detection threshold between the two. In this paper, we propose a new approach for setting an absolute detection threshold for all terms by introducing a new calibrated loss function. The advantage of minimizing this loss function during training is that it aims at maximizing not only the relative ranking scores, but also adjusts the system to use a fixed threshold and thus maximizes the detection accuracy rates. We use the new loss function in the structured prediction setting and extend the discriminative keyword spotting algorithm for learning the spoken term detector with a single threshold for all terms. We further demonstrate the effectiveness of the new loss function by training a deep neural Siamese network in a weakly supervised setting for template-based STD, again with a single fixed threshold. Experiments with the TIMIT, Wall Street Journal (WSJ), and Switchboard corpora showed that our approach not only improved the accuracy rates when a fixed threshold was used but also obtained higher area under curve (AUC).
机译:语音术语检测(STD)是确定给定单词或短语在给定语音片段中是否出现以及在何处出现的任务。 STD的算法通常旨在最大化正例和负例的得分之间的差距。因此,他们专注于确保出现该词的话语的排名高于不出现该词的话语的排名。但是,它们无法确定两者之间的检测阈值。在本文中,我们提出了一种通过引入新的校准损耗函数为所有项设置绝对检测阈值的新方法。在训练过程中最小化此损失函数的优势在于,其目标不仅是使相对排名得分最大化,而且旨在调整系统以使用固定阈值,从而使检测准确率最大化。我们在结构化的预测设置中使用了新的损失函数,并扩展了判别关键字发现算法,以针对所有术语使用单个阈值来学习口语术语检测器。我们通过在基于模板的STD的弱监督设置下训练深层神经暹罗网络(再次使用单个固定阈值)进一步证明了新损失函数的有效性。 TIMIT,《华尔街日报》(WSJ)和Switchboard语料库的实验表明,当使用固定阈值时,我们的方法不仅提高了准确率,而且获得了更大的曲线下面积(AUC)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号