首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >Characterization of Plenoptic Imaging Systems and Efficient Volumetric Estimation From Plenoptic Data
【24h】

Characterization of Plenoptic Imaging Systems and Efficient Volumetric Estimation From Plenoptic Data

机译:全光成像系统的表征和全光数据的有效体积估计

获取原文
获取原文并翻译 | 示例

摘要

Light-field cameras in conjunction with computational refocusing can be used to produce volumetric estimates of an imaged scene. However, these estimates are often dominated by image blur in the depth direction from objects not in each synthesized focal plane. Tomographic algorithms have been shown to be effective in creating volumetric estimates from plenoptic data but are often prohibitively slow. Deconvolution would be an attractive solution due to processing speed, but existing image synthesis equations are shift-variant. This research proposes an alternate refocusing transformation that makes the core problem described in continuous coordinates shift-invariant so that deconvolution is a viable solution. Shift-invariance of the new refocusing transform is demonstrated mathematically. Furthermore, the discretization involved in the imaging system and refocusing algorithm are characterized with respect to shift-variance in order to identify potential sources of artifacts and to propose potential mitigating steps where possible. While the sampled light field is not directly invertible, experimental data are used to demonstrate that regularized deconvolution using the derived synthesis equations produces improved results compared to the base focal stack in both synthetic examples and actual camera data.
机译:结合计算重聚焦的光场相机可用于生成成像场景的体积估计。但是,这些估计通常由来自不在每个合成焦平面中的物体的深度方向上的图像模糊所主导。层析成像算法已被证明可有效地从全光数据中创建体积估计值,但通常速度缓慢。由于处理速度的原因,反卷积将是一个有吸引力的解决方案,但是现有的图像合成方程式是变化的。这项研究提出了一种替代性的重新聚焦变换,该变换使得在连续坐标中描述的核心问题不变,因此反卷积是一个可行的解决方案。数学上证明了新的重新聚焦变换的平移不变性。此外,在成像系统和重新聚焦算法中涉及的离散化的特征在于偏移方差,以便识别伪影的潜在来源并在可能的情况下提出缓解措施。虽然采样的光场不是直接可逆的,但实验数据用于证明与合成示例和实际相机数据中的基本焦距堆栈相比,使用导出的合成方程进行正则反褶积处理可产生更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号