首页> 外文会议>Computational imaging XII >Efficient Volumetric Estimation from Plenoptic Data
【24h】

Efficient Volumetric Estimation from Plenoptic Data

机译:通过全光数据进行有效的体积估算

获取原文
获取原文并翻译 | 示例

摘要

The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.
机译:Lytro相机的商业版本以及全光成像系统的普遍可用性,为图像处理社区提供了具有成本效益的光场成像工具。尽管此数据最常用于生成任意焦深的平面图像,但重建体积场也是可能的。类似地,反卷积是在平面图像重建或去模糊算法中常规使用的技术。但是,当利用光场相机的能力来快速重现成像体积内的多个焦平面时,反卷积提供了一种体积重建的计算有效方法。相关研究表明,结合层析成像重建技术的光场成像系统也能够估计成像体积,并已成功应用于粒子图像测速(PIV)。然而,尽管已证明通过诸如乘法代数重建技术(MART)之类的算法进行层析成像体积估计非常准确,但它们的计算量很大。在本文中,重构问题显示为可通过反卷积解决。与其他层析成像方法相比,反卷积通过使用快速傅立叶变换(FFT)大大提高了计算效率。这项工作描述了一种反卷积算法,旨在从模拟的全光数据中重建3D粒子场。提出了现有基于2D FFT的重新聚焦技术的3D扩展,以进一步提高计算对象焦点堆栈和系统点扩展函数(PSF)时的效率。识别出重建工件;在可能的情况下,探索其潜在的来源和缓解方法,并提供模拟粒子场的重建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号