首页> 外文期刊>Selected Topics in Signal Processing, IEEE Journal of >An Assessment of Paralinguistic Acoustic Features for Detection of Alzheimer's Dementia in Spontaneous Speech
【24h】

An Assessment of Paralinguistic Acoustic Features for Detection of Alzheimer's Dementia in Spontaneous Speech

机译:对血管语言声学特征的评估,用于检测Alzheimer在自发言论中的痴呆

获取原文
获取原文并翻译 | 示例

摘要

Speech analysis could provide an indicator of Alzheimer's disease and help develop clinical tools for automatically detecting and monitoring disease progression. While previous studies have employed acoustic (speech) features for characterisation of Alzheimer's dementia, these studies focused on a few common prosodic features, often in combination with lexical and syntactic features which require transcription. We present a detailed study of the predictive value of purely acoustic features automatically extracted from spontaneous speech for Alzheimer's dementia detection, from a computational paralinguistics perspective. The effectiveness of several state-of-the-art paralinguistic feature sets for Alzheimer's detection were assessed on a balanced sample of DementiaBank's Pitt spontaneous speech dataset, with patients matched by gender and age. The feature sets assessed were the extended Geneva minimalistic acoustic parameter set (eGeMAPS), the emobase feature set, the ComParE 2013 feature set, and new Multi-Resolution Cochleagram (MRCG) features. Furthermore, we introduce a new active data representation (ADR) method for feature extraction in Alzheimer's dementia recognition. Results show that classification models based solely on acoustic speech features extracted through our ADR method can achieve accuracy levels comparable to those achieved by models that employ higher-level language features. Analysis of the results suggests that all feature sets contribute information not captured by other feature sets. We show that while the eGeMAPS feature set provides slightly better accuracy than other feature sets individually (71.34%), "hard fusion" of feature sets improves accuracy to 78.70%.
机译:言语分析可以提供阿尔茨海默病的指标,并帮助开发用于自动检测和监测疾病进展的临床工具。虽然以前的研究采用了用于表征阿尔茨海默痴呆症的声学(语音)特征,但这些研究致力于少数常见的韵律特征,通常与需要转录的词汇和语法特征相结合。我们从计算的Paralingicantics Perspepive展示了对阿尔茨海默痴呆检测的自发语音自动提取的纯声学特征的预测值的详细研究。在DementiaBank的PITT自发性语音数据集的平衡样本中评估了用于阿尔茨海默检测的几种最新的级语言特征的有效性,患者与性别和年龄相匹配。评估的功能集是Extended Geneva Minimalistic参数集(ENEMAPS),Emobase功能集,比较2013功能集和新的多分辨率Cochleagram(MRCG)功能。此外,我们介绍了Alzheimer痴呆识别中的一个新的活动数据表示(ADR)方法,用于特征提取。结果表明,完全基于通过我们的ADR方法提取的声学语音特征的分类模型可以实现与采用更高级别语言特征的模型实现的准确度水平。结果分析表明,所有功能集都会有助于其他功能集捕获的信息。我们认为,虽然EGEMAPS功能集可以单独提供比其他特征集(71.34%),功能集的“硬融合”提高了78.70%的“硬融合”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号