首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Change Detection in High-Resolution SAR Images Based on Jensen–Shannon Divergence and Hierarchical Markov Model
【24h】

Change Detection in High-Resolution SAR Images Based on Jensen–Shannon Divergence and Hierarchical Markov Model

机译:基于詹森-香农散度和层次马尔可夫模型的高分辨率SAR图像变化检测

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of change detection in high-resolution multitemporal synthetic aperture radar (SAR) images. We propose to use Jensen–Shannon divergence (JSD) to measure the dissimilarity of the two scenes acquired at different times for deriving the difference map (DM). We figure out this divergence in a nonparametric way by introducing a direct density ratio estimation, making the DM generation free of distribution assumption. We also present a multiscale change detection framework which can capture and combine change cues at different scales. First, the coregistered SAR image pairs are decomposed into different scales by multiscale decimated wavelet transform (DWT). Next, the DM in each scale is generated by computing the local JSD. These DMs are then represented by a hierarchical Markovian model based on a quad-tree structure. The change map is finally inferred relying on hierarchical marginal posterior mode (HMPM). Experimental results on multitemporal TerraSAR-X images demonstrate the effectiveness of the proposed approach.
机译:本文解决了高分辨率多时相合成孔径雷达(SAR)图像中的变化检测问题。我们建议使用詹森-香农散度(JSD)来度量在不同时间获取的两个场景的差异,以得出差异图(DM)。我们通过引入直接密度比估计以非参数的方式找出这种差异,从而使DM生成摆脱了分布假设。我们还提出了一种多尺度变化检测框架,该框架可以捕获和组合不同尺度的变化线索。首先,通过多尺度抽取小波变换(DWT)将共配准的SAR图像对分解为不同的尺度。接下来,通过计算本地JSD生成每个比例尺的DM。这些DM然后由基于四叉树结构的层次马尔可夫模型表示。最终,根据层次化边缘后验模式(HMPM)推断变化图。在多时相TerraSAR-X图像上的实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号