首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Unsupervised Change Detection of SAR Images Based on Variational Multivariate Gaussian Mixture Model and Shannon Entropy
【24h】

Unsupervised Change Detection of SAR Images Based on Variational Multivariate Gaussian Mixture Model and Shannon Entropy

机译:基于变分多元高斯混合模型和香农熵的SAR图像的无监督变化检测

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we propose an unsupervised change detection method for synthetic aperture radar (SAR) images based on variational multivariate Gaussian mixture model (MGMM) and Shannon entropy. First, the difference features are generated from the Gabor wavelet transform of two SAR images. In variational inference framework, the variational MGMM is first introduced to implement accurate modeling for the data distribution of difference features and to output responsibilities. Subsequently, spatial information is explored on the responsibilities to yield the contextual responsibilities for improving the accuracy and reliability of change detection. Then, a posteriori probabilities of the changed and unchanged classes are derived from the contextual responsibilities, and Shannon entropy, being directly related to the classification error rate, is proposed to determine the optimal index integer. Finally, the binary change mask is achieved by separating the pixels into the changed and unchanged classes. The experiments on three pairs of SAR images for describing urban sprawl and water bodies demonstrate the effectiveness of the proposed method.
机译:在这封信中,我们提出了一种基于变分多元高斯混合模型(MGMM)和Shannon熵的综合孔径雷达(SAR)图像的无监督变化检测方法。首先,从两个SAR图像的Gabor小波变换产生差异特征。在变分推理框架中,首先引入变分MGMM以实现准确的模型,用于差异特征的数据分布和输出职责。随后,探讨了空间信息,以产生提高变化检测准确性和可靠性的上下文职责。然后,提出了从上下文职责的后验和不变的类的概率从上下文职责,并且Shannon熵与分类错误率直接相关,以确定最佳索引整数。最后,通过将像素分离成改变和不变的类来实现二进制更改掩模。用于描述城市蔓延和水体三对SAR图像的实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号