首页> 外文期刊>Scientific programming >Boosting Accuracy of Classical Machine Learning Antispam Classifiers in Real Scenarios by Applying Rough Set Theory
【24h】

Boosting Accuracy of Classical Machine Learning Antispam Classifiers in Real Scenarios by Applying Rough Set Theory

机译:应用粗糙集理论提高真实场景中经典机器学习反垃圾邮件分类器的准确性

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, spam deliveries represent a major problem to benefit from the wide range of Internet-based communication forms. Despite the existence of different well-known intelligent techniques for fighting spam, only some specific implementations of Naive Bayes algorithm are finally used in real environments for performance reasons. As long as some of these algorithms suffer from a large number of false positive errors, in this work we propose a rough set postprocessing approach able to significantly improve their accuracy. In order to demonstrate the advantages of the proposed method, we carried out a straightforward study based on a publicly available standard corpus (SpamAssassin), which compares the performance of previously successful well-known antispam classifiers (i.e., Support Vector Machines, AdaBoost, Flexible Bayes, and Naive Bayes) with and without the application of our developed technique. Results clearly evidence the suitability of our rough set postprocessing approach for increasing the accuracy of previous successful antispam classifiers when working in real scenarios.
机译:如今,垃圾邮件传递已成为一个主要问题,要从众多基于Internet的通信形式中受益。尽管存在各种与垃圾邮件作斗争的智能技术,但出于性能原因,最终仅在实际环境中使用了朴素贝叶斯算法的某些特定实现。只要这些算法中的某些遭受大量误报错误,在这项工作中,我们提出了一种粗糙集的后处理方法,能够显着提高其准确性。为了证明该方法的优势,我们基于公开的标准语料库(SpamAssassin)进行了一项简单的研究,该研究比较了以前成功的著名反垃圾邮件分类器(即支持向量机,AdaBoost,Flexible贝叶斯和朴素贝叶斯),无论是否使用我们开发的技术。结果清楚地证明了我们的粗糙集后处理方法在实际环境中工作时适合提高先前成功的反垃圾邮件分类器的准确性。

著录项

  • 来源
    《Scientific programming》 |2016年第1期|5945192.1-5945192.10|共10页
  • 作者单位

    Univ Vigo, Higher Tech Sch Comp Engn, Polytech Bldg,Campus Univ Lagoas S-N, Orense 32004, Spain;

    Univ Vigo, Higher Tech Sch Comp Engn, Polytech Bldg,Campus Univ Lagoas S-N, Orense 32004, Spain;

    Univ Vigo, Higher Tech Sch Comp Engn, Polytech Bldg,Campus Univ Lagoas S-N, Orense 32004, Spain;

    Univ Vigo, Higher Tech Sch Comp Engn, Polytech Bldg,Campus Univ Lagoas S-N, Orense 32004, Spain;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号