首页> 外文期刊>Biomedical signal processing and control >Performance potential of classical machine learning and deep learning classifiers for isometric upper-body myoelectric control of direction in virtual reality with reduced muscle inputs
【24h】

Performance potential of classical machine learning and deep learning classifiers for isometric upper-body myoelectric control of direction in virtual reality with reduced muscle inputs

机译:古典机器学习的性能潜力和深度学习分类器,用于等距上半身的虚拟现实方向上的肌电控制,减少肌肉投入

获取原文
获取原文并翻译 | 示例

摘要

Electromyography (EMG) signals can be classified by machine learning (ML) algorithms to command prosthetic devices that functionally assist persons after neuromuscular traumas, including amputation and spinal cord injury. This pilot study evaluated several ML algorithms in mapping isometric EMG signals from the upper body (dominant-side arm, chest, back) of able-bodied participants to directional commands across multiple muscle recording sets. Each set (up to 14 muscles) was based on muscles presumed under volitional control following various levels of nerve lesion or amputation. Among the evaluated ML algorithms were those that did and did not rely on feature extraction. The ML algorithms included: support vector machine, adaptive boosting, bootstrap aggregating, Naive Bayes, linear discriminant analysis, and variations of neural networks (NN). Specifically, we examined a shallow (single-layer feedforward) NN and two 'deep' NN structures (ten-layer feedforward network, convolutional NN). The ML algorithms were evaluated according to classification accuracy and performance in a maze navigation task in virtual reality. Adaptive boosting and bootstrap aggregating demonstrated significantly greater (p 0.05) classification accuracy across most muscle sets. Maze task performance depended on the combination of classifier and muscle set utilized. Advantages in classification accuracy from adaptive boosting and bootstrap aggregating should be balanced against the cost of increased time to train EMG control for persons with motor impairment.
机译:肌电图(EMG)信号可以通过机器学习(ML)算法来分类,以指挥功能促使神经肌肉创伤后的假肢装置,包括截肢和脊髓损伤。该导频研究评估了来自高肌录像集的能够体内参与者的上半身(主导侧臂,胸部,胸部)在映射等距EMG信号中的映射算法。每组(最多14个肌肉)基于在各种神经病变或截肢后的激动控制下推测的肌肉。在评估的ML算法中是那些并且不依赖于特征提取的锰算法中。 ML算法包括:支持向量机,自适应提升,自举聚集,幼稚贝叶斯,线性判别分析以及神经网络的变化(NN)。具体地,我们检查了浅(单层前馈)NN和两个'深的NN结构(十层前馈网络,卷积NN)。在虚拟现实中的迷宫导航任务中的分类准确性和性能评估M1算法。自适应升压和自举聚集在大多数肌肉套装上显着更大(P& 0.05)分类准确性。迷宫任务表现依赖于使用分类器和肌肉集的组合。自适应升压和自动启动聚合的分类精度的优点应符合增加时间的增加时间,以便为电动机损伤的人训练EMG控制。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第4期|1026-1036|共11页
  • 作者单位

    Stevens Inst Technol Dept Biomed Engn Hoboken NJ 07030 USA|Stevens Inst Technol Movement Control Rehabil MOCORE Lab Altorfer Complex Hoboken NJ 07030 USA;

    Stevens Inst Technol Dept Biomed Engn Hoboken NJ 07030 USA|Stevens Inst Technol Movement Control Rehabil MOCORE Lab Altorfer Complex Hoboken NJ 07030 USA;

    Stevens Inst Technol Dept Comp Sci Hoboken NJ 07030 USA|Stevens Inst Technol Movement Control Rehabil MOCORE Lab Altorfer Complex Hoboken NJ 07030 USA;

    James J Peters VA Med Ctr Spinal Cord Damage Res Ctr Bronx NY USA|Icahn Sch Med Mt Sinai Dept Neurol & Rehabil New York NY 10029 USA;

    Stevens Inst Technol Dept Biomed Engn Hoboken NJ 07030 USA|Stevens Inst Technol Movement Control Rehabil MOCORE Lab Altorfer Complex Hoboken NJ 07030 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Myoelectric control; Neuromotor rehabilitation; Electromyography; Machine learning; Prosthesis; Virtual reality; Upper body function;

    机译:肌电控制;神经大通康复;肌电图;机器学习;假肢;虚拟现实;上身功能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号