首页> 外文期刊>Scientific programming >A Novel Multimean Particle Swarm Optimization Algorithm for Nonlinear Continuous Optimization: Application to Feed-Forward Neural Network Training
【24h】

A Novel Multimean Particle Swarm Optimization Algorithm for Nonlinear Continuous Optimization: Application to Feed-Forward Neural Network Training

机译:非线性连续优化的新型均值粒子群算法:在前馈神经网络训练中的应用

获取原文
获取原文并翻译 | 示例

摘要

Multilayer feed-forward artificial neural networks are one of the most frequently used data mining methods for classification, recognition, and prediction problems. The classification accuracy of a multilayer feed-forward artificial neural networks is proportional to training. A well-trained multilayer feed-forward artificial neural networks can predict the class value of an unseen sample correctly if provided with the optimum weights. Determining the optimum weights is a nonlinear continuous optimization problem that can be solved with metaheuristic algorithms. In this paper, we propose a novelmultimean particle swarmoptimization algorithm for multilayer feed-forward artificial neural networks training. The proposed multimean particle swarm optimization algorithm searches the solution space more efficiently with multiple swarms and finds better solutions than particle swarm optimization. To evaluate the performance of the proposed multimean particle swarm optimization algorithm, experiments are conducted on ten benchmark datasets from the UCI repository and the obtained results are compared to the results of particle swarm optimization and other previous research in the literature. The analysis of the results demonstrated that the proposed multimean particle swarm optimization algorithm performed well and it can be adopted as a novel algorithm for multilayer feedforward artificial neural networks training.
机译:多层前馈人工神经网络是用于分类,识别和预测问题的最常用数据挖掘方法之一。多层前馈人工神经网络的分类精度与训练成正比。如果提供了最佳权重,则训练有素的多层前馈人工神经网络可以正确预测未见样品的分类值。确定最佳权重是一个非线性的连续优化问题,可以用元启发式算法解决。在本文中,我们提出了一种用于多层前馈人工神经网络训练的新型多元粒子群优化算法。提出的多均值粒子群优化算法利用多个粒子群更有效地搜索解空间,并找到比粒子群优化更好的解。为了评估所提出的多均值粒子群优化算法的性能,对UCI资料库中的十个基准数据集进行了实验,并将所得结果与粒子群优化的结果和文献中的其他先前研究进行了比较。结果分析表明,提出的多均值粒子群优化算法性能良好,可作为一种新的多层前馈人工神经网络训练算法。

著录项

  • 来源
    《Scientific programming》 |2018年第2期|1435810.1-1435810.9|共9页
  • 作者单位

    Necmettin Erbakan Univ, Dept Comp Engn, Konya, Turkey;

    Necmettin Erbakan Univ, Dept Comp Engn, Konya, Turkey;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号