首页> 外文期刊>Science of the total environment >A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures
【24h】

A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures

机译:基于距离衰减变量选择策略的土地利用回归模型的环境空气污染暴露

获取原文
获取原文并翻译 | 示例

摘要

Land use regression (LUR) has emerged as an effective and economical means of estimating air pollution exposures for epidemiological studies. To date, no systematic method has been developed for optimizing the variable selection process. Traditionally, a limited number of buffer distances assumed having the highest correlations with measured pollutant concentrations are used in the manual stepwise selection process or a model transferred from another urban area.rnIn this paper we propose a novel and systematic way of modeling long-term average air pollutant concentrations through "A Distance Decay REgression Selection Strategy" (ADDRESS). The selection process includes multiple steps and, at each step, a full spectrum of correlation coefficients and buffer distance decay curves are used to select a spatial covariate of the highest correlation (compared to other variables) at its optimized buffer distance. At the first step, the series of distance decay curves is constructed using the measured concentrations against the chosen spatial covariates. A variable with the highest correlation to pollutant levels at its optimized buffer distance is chosen as the first predictor of the LUR model from all the distance decay curves. Starting from the second step, the prediction residuals are used to construct new series of distance decay curves and the variable of the highest correlation at its optimized buffer distance is chosen to be added to the model. This process continues until a variable being added does not contribute significantly (p>0.10) to the model performance. The distance decay curve yields a visualization of change and trend of correlation between the spatial covariates and air pollution concentrations or their prediction residuals, providing a transparent and efficient means of selecting optimized buffer distances. Empirical comparisons suggested that the ADDRESS method produced better results than a manual stepwise selection process of limited buffer distances. The method also enables researchers to understand the likely scale of variables that influence pollution levels, which has potentially important ramifications for planning and epidemiological studies.
机译:土地使用回归(LUR)已成为一种流行病学研究中估算空气污染暴露的有效且经济的手段。迄今为止,尚未开发出用于优化变量选择过程的系统方法。传统上,在人工逐步选择过程或从另一个城市区域转移的模型中使用有限数量的假定与测量的污染物浓度具有最高相关性的缓冲距离。本文提出了一种新颖且系统的长期平均值建模方法通过“距离衰减回归选择策略”(ADDRESS)确定空气污染物浓度。选择过程包括多个步骤,并且在每个步骤中,使用全范围的相关系数和缓冲区距离衰减曲线来选择在其最佳缓冲区距离处具有最高相关性(与其他变量相比)的空间协变量。第一步,使用针对所选空间协变量的测得浓度构建距离衰减曲线系列。从所有距离衰减曲线中,在最佳缓冲距离下与污染物水平具有最高相关性的变量被选为LUR模型的第一预测因子​​。从第二步开始,将预测残差用于构建新的距离衰减曲线系列,并选择在其最佳缓冲距离处具有最高相关性的变量添加到模型中。这个过程一直持续到添加变量对模型性能的贡献不大(p> 0.10)为止。距离衰减曲线可直观显示空间协变量与空气污染浓度或其预测残差之间的变化和相关趋势,从而为选择最佳缓冲距离提供了透明而有效的手段。经验比较表明,与有限缓冲区距离的手动逐步选择过程相比,ADDRESS方法产生了更好的结果。该方法还使研究人员能够了解影响污染水平的变量的可能规模,这对于规划和流行病学研究可能具有重要意义。

著录项

  • 来源
    《Science of the total environment》 |2009年第12期|3890-3898|共9页
  • 作者单位

    Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall, Berkeley, CA, 94720-7360, USA;

    Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall, Berkeley, CA, 94720-7360, USA;

    Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall, Berkeley, CA, 94720-7360, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    land use regression; air pollution; GIS; spatial distance decay; model selection;

    机译:土地利用回归空气污染;地理信息系统空间距离衰减选型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号