首页> 外文期刊>The Science of the Total Environment >Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface
【24h】

Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface

机译:模拟土壤-大气界面中半挥发性有机化合物(SVOC)的长期吸收和再挥发

获取原文
获取原文并翻译 | 示例

摘要

Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil.
机译:土壤与大气之间的交换对于许多半挥发性有机化合物(SVOC)的环境命运和大气传输非常重要。这项研究的重点是使用多组分反应性迁移代码MIN3P模拟土壤和大气之间的半挥发性疏水性有机污染物的气相交换。 MIN3P通常用于模拟地下的水相和气相传输以及反应过程。我们将代码扩展为还包括发生涡流扩散的大气边界层。在几种一维模型场景中,并在不同的时间尺度(从几年到几个世纪)中研究了影响土壤-大气交换的相关过程和参数。菲被选作模型化合物,但结果也适用于其他疏水性有机化合物。假定在污染期和随后的调节期(排放率下降50%)中一直向系统中供应气态菲。我们的结果表明,菲在土壤中的长期交换受土壤区室控制-因此,重新挥发取决于土壤的性质。敏感性分析表明,土壤中的累积和运输在短期内以扩散为主,而长期而言,地下水的补给和生物降解变得至关重要。如所期望的,吸附引起阻滞并减慢运输和生物降解。如果降低大气浓度(例如,根据环境法规),则仅在相对较短的时间内从土壤重新挥发到大气中。因此,模型结果表明土壤通常是大气污染物的汇。大气边界层仅与小于一个月的时标有关。扩展的MIN3P代码还可用于模拟大气中的波动浓度,例如由于表层土壤的温度变化而引起的浓度波动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号