首页> 外文期刊>Robotica >Kinematics-Based End-Effector Path Control of a Mobile Manipulator System on an Uneven Terrain Using a Two-Stage Support Vector Machine
【24h】

Kinematics-Based End-Effector Path Control of a Mobile Manipulator System on an Uneven Terrain Using a Two-Stage Support Vector Machine

机译:使用两级支持向量机在不均匀地形上的移动机械手系统的基于运动的最终效应路径控制

获取原文
获取原文并翻译 | 示例

摘要

A mobile manipulator system (MMS) consists of a robotic arm mounted on a mobile platform that is used in rescue and relief, space exploration, warehouse automation, etc. As the total system has 14 Degrees of Freedom (DOF), it does not have a closed-form inverse kinematics (IK) solution. A learning-based method is proposed, which uses the forward kinematics data to learn the IK relation for motion of an MMS on a rough terrain, using a one-class support vector machine (SVM) framework. Once trained, the model estimates the joint probability distribution of the MMS configuration and end-effector position. This distribution is used to find the MMS configuration for a given desired end-effector path. Past research using a Kohonen Self organizing map (KSOM) neural network-based open-loop control method has shown that the MMS deviates from its desired path while moving on an uneven terrain due to unknown disturbances such as wheel slip, slide, and terrain deformation. Therefore, a new sequential two-stage SVM-based end-effector path-tracking control scheme is proposed to control the end-effector path. In this scheme, the error in the end-effector path is continuously tracked with the help of a Microsoft Kinect 2.0 (Microsoft Regional Sales, Singapore 119968) and is sent as a feedback to the controller. Once the error reaches a threshold value, the error correction step of the controller gets activated to correct the error until the desired accuracy is reached. The effectiveness of the proposed approach is proved through extensive simulations and experiments conducted on 3D terrain in which it is shown that the end effector can follow the desired path with an average experimental error of around 2 cm between the desired and final corrected path.
机译:移动机械手系统(MMS)由安装在救援和浮雕,空间探索,仓库自动化等中使用的移动平台上安装的机器人臂组成。由于总系统具有14度的自由(DOF),它没有封闭形式的逆运动学(IK)解决方案。提出了一种基于学习的方法,它使用前向运动学数据来学习IK对粗糙地形上MMS运动的IK关系,使用单级支持向量机(SVM)框架。一旦训练,该模型估计了MMS配置和终效应物位置的联合概率分布。该分布用于找到给定期望的末端执行器路径的MMS配置。过去的研究使用Kohonen自组织地图(KSOM)基于神经网络的开环控制方法表明,MMS由于车轮滑动,载玻片和地形变形等未知干扰而在不均匀的地形上移动,因此MMS偏离其所需的路径。因此,提出了一种新的序贯两阶段SVM的末端执行器路径跟踪控制方案来控制末端执行器路径。在此方案中,在Microsoft Kinect 2.0的帮助下连续跟踪末端执行器路径中的错误(Microsoft区域销售,新加坡119968),并作为对控制器的反馈发送。一旦错误达到阈值,控制器的纠错步骤被激活以纠正错误,直到达到所需的精度。通过广泛的模拟和在3D地形上进行的实验证明了所提出的方法的有效性,其中表明末端效应器可以遵循所需的路径,平均实验误差在所需和最终校正的路径之间的平均实验误差约为2cm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号