首页> 外文期刊>Robotics and Computer Integrated Manufacturing >Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing
【24h】

Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing

机译:基于多传感器融合的虚拟工具磨损传感技术,用于无处不在的制造

获取原文
获取原文并翻译 | 示例

摘要

Pervasiveness of ubiquitous computing advances the manufacturing scheme into a ubiquitous manufacturing era which poses significant challenges on sensing technology and system reliability. To improve manufacturing system reliability, this paper presents a new virtual tool wear sensing technique based on multisensory data fusion and artificial intelligence model for tool condition monitoring. It infers the difficult-to-measure tool wear parameters (e.g. tool wear width) by fusing in-process multisensory data (e.g. force, vibration, etc.) with dimension reduction technique and support vector regression model. Different state-of-the-art dimension reduction techniques including kernel principal component analysis, locally linear embedding, isometric feature mapping, and minimum redundancy maximum relevant method have been investigated for feature fusion in a virtual sensing model, and the kernel principal component analysis performs best in terms of sensing accuracy. The effectiveness of the developed virtual tool wear sensing technique is experimentally validated in a set of machining tool run-to-failure tests on a computer numerical control milling machine. The results show that the estimated tool wear width through virtual sensing is comparable to that measured offline by a microscope instrument in terms of accuracy, moreover, in a more cost-effective manner.
机译:普适计算的普遍性使制造方案进入了普适制造时代,这对传感技术和系统可靠性提出了严峻挑战。为了提高制造系统的可靠性,本文提出了一种基于多传感器数据融合和人工智能模型的虚拟刀具磨损传感技术,用于刀具状态监测。通过将加工中的多传感器数据(例如力,振动等)与降维技术和支持向量回归模型融合,可以推断出难以测量的工具磨损参数(例如工具磨损宽度)。针对虚拟感测模型中的特征融合,研究了各种最新的降维技术,包括内核主成分分析,局部线性嵌入,等距特征映射和最小冗余最大相关方法,在传感精度方面最好。在计算机数控铣床上进行的一系列机加工失败测试中,通过实验验证了开发的虚拟刀具磨损传感技术的有效性。结果表明,通过虚拟感测估算出的刀具磨损宽度在准确性方面与通过显微镜仪器离线测量的磨损宽度可比,并且更具成本效益。

著录项

  • 来源
  • 作者单位

    School of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China;

    School of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China;

    School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore;

    School of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China;

    School of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    tool wear estimation; virtual sensing; feature fusion;

    机译:工具磨损估计;虚拟感测;特征融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号