首页> 外文期刊>Robotics and Autonomous Systems >Reinforcement learning of goal-directed obstacle-avoiding reaction strategies in an autonomous mobile robot
【24h】

Reinforcement learning of goal-directed obstacle-avoiding reaction strategies in an autonomous mobile robot

机译:自主移动机器人中针对目标的避障反应策略的强化学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper we argue for building reactive autonomous mobile robots through reinforcement connectionist learning. Nevertheless, basic reinforcement learning is a slow process. This paper describes an architecture which deals with complex— high-dimensional and/or continuous—situation and action spaces effectively. This architecture is based on two main ideas. The first is to organize the reactive component into a set of modules in such a way that, roughly, each one of them codifies the prototypical action for a given cluster of situations. The second idea is to use a particular kind of planning for figuring out what part of the action space deserves attention for each cluster of situations. Salient features of the planning process are that it is grounded and that it is invoked only when the reactive component does not generalize correctly its previous experience to the new situation. We also report our experience in solving a basic task that most autonomous mobile robots must face, namely path finding.
机译:在本文中,我们主张通过加强连接主义学习来构建反应式自主移动机器人。但是,基本强化学习是一个缓慢的过程。本文描述了一种可有效处理复杂(高维和/或连续)情境和动作空间的体系结构。该体系结构基于两个主要思想。第一种方法是将反应性组件组织为一组模块,这样,每个模块可以大致将给定情况下的原型动作编成代码。第二个想法是使用一种特殊的计划来确定对于每个情境群集,动作空间的哪个部分值得关注。计划过程的显着特征是它是扎根的,只有当反应性组件不能正确地将其以前的经验推广到新情况时才调用它。我们还将报告我们在解决大多数自主移动机器人必须面对的基本任务(即路径查找)方面的经验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号