首页> 外文期刊>Reliability Engineering & System Safety >Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics
【24h】

Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics

机译:贝叶斯统计下核计算机代码模型评估和高级不确定性量化的综合框架

获取原文
获取原文并翻译 | 示例

摘要

A framework for model evaluation and uncertainty quantification (UQ) is presented with applications oriented to nuclear engineering simulation codes. Our framework is inspired by the previous research on Bayesian statistics and model averaging. The methodology is demonstrated by performing UQ of three thermal-hydraulic computer codes used for two-phase flow simulation inside nuclear reactors, and conclusions regarding their performance are drawn. The complexity of the framework implementation depends upon the information to be drawn about the models as well as the nature of the models and the data. Uncertainties inherent in the input parameters and experimental data, along with predictive and model-form uncertainty can be quantified in this methodology. A composite (average) model based on the competent models can be created for improved response prediction. Two benchmarks featuring steady-state void fraction data in full-scale light water reactor (LWR) channels are used to demonstrate the methodology. The results show that the three models/codes demonstrate variable competitiveness in reproducing the data (i.e. goodness of fit with the data). There is no consistent trend at which each code excels. The predictive uncertainty (representing individual model deficiency or discrepancy) dominates the model-form uncertainty for many cases in this study due to two reasons: (1) presence of a single competent model for a specific response and (2) poor agreement with experimental data for certain responses at which nuclear codes struggle, such as low pressure and subcooled boiling conditions. In general, improvements in composite predictions (based on posterior model weights) are observed for BFBT data, while slight improvement is found for PSBT. For PSBT, the predictive uncertainty of RELAP5 and TRACE dominates the response uncertainty causing weak improvement. Additional efforts are needed to improve the closure models of these codes in future to reduce the model discrepancy contribution. This framework can be utilized for this purpose at which various closure models for the same code can be assessed in terms of their effect on the final response uncertainty. The proposed framework is flexible and extendable to other types of physics, models, and data. Developing the underlying methodology of calculating the model weights is the main focus in the subsequent studies.
机译:提出了模型评估和不确定性量化(UQ)的框架,以及面向核工程仿真代码的应用程序。我们的框架的灵感来自先前对贝叶斯统计和模型平均的研究。通过对用于核反应堆内部两相流模拟的三种热工计算机代码的UQ进行验证,论证了该方法,并得出了有关其性能的结论。框架实现的复杂性取决于有关模型的信息以及模型和数据的性质。输入参数和实验数据固有的不确定性以及预测性和模型形式的不确定性可以通过这种方法进行量化。可以创建基于主管模型的复合(平均)模型以改善响应预测。使用两个基准在全尺寸轻水反应堆(LWR)通道中具有稳态空隙率数据的方法来演示该方法。结果表明,这三种模型/代码在复制数据方面表现出可变的竞争力(即与数据拟合的良好性)。每个代码都没有一个统一的趋势。由于两个原因,在本研究的许多情况下,预测不确定性(代表单个模型的不足或差异)在模型形式的不确定性中占主导地位:(1)对于特定反应存在单个能胜任的模型;(2)与实验数据的一致性差对于某些难以满足核规范要求的应对措施,例如低压和过冷沸腾条件。通常,对于BFBT数据,可以观察到复合预测(基于后验模型权重)的改进,而对于PSBT,则可以发现略有改进。对于PSBT,RELAP5和TRACE的预测不确定性主导了响应不确定性,从而导致改善较弱。将来需要付出额外的努力来改进这些代码的闭合模型,以减少模型差异的影响。此框架可用于此目的,在此框架中,可以根据对最终响应不确定性的影响来评估同一代码的各种关闭模型。所提出的框架是灵活的,并且可以扩展到其他类型的物理,模型和数据。研发计算模型权重的基础方法是后续研究的重点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号