首页> 外文期刊>Reactive & Functional Polymers >Mean-square radius of gyration and the hydrodynamic radius for topological polymers expressed with graphs evaluated by the method of quaternions revisited
【24h】

Mean-square radius of gyration and the hydrodynamic radius for topological polymers expressed with graphs evaluated by the method of quaternions revisited

机译:重现四元数方法的图表示的拓扑聚合物的平均回转半径和流体动力学半径

获取原文
获取原文并翻译 | 示例

摘要

We revisit the numerical quaternionic study on the mean-square radius of gyration and the hydrodynamic radius for topological or graph-shaped polymers. We show that it is consistent with other approaches although we apply a nontrivial modification of the quaternionic method [51] for generating random polygons. In the modified method we generate random walks that connect two given points by rescaling the bond length and assign them some weight. We evaluate by it the mean-square radius of gyration and the hydrodynamic radius for several topological polymers. We correct the plots of Ref. [46] for the hydrodynamic radius versus the segment number and for the ratio of the gyration to the hydrodynamic radius versus the segment number. The estimated ratios are close to the values derived from an analytic assumption of the pair distribution function. The gyration radius of the multi-theta chain evaluated by the modified method agrees with exact Gaussian results [48]. We derive the moments of the bond vectors' coordinates distribution in random polygons generated by the quaternionic method.
机译:我们回顾了关于拓扑或图形聚合物的均方回转半径和流体动力学半径的数值四元数研究。我们展示了它与其他方法是一致的,尽管我们对生成随机多边形应用了四元离子方法的非平凡修改[51]。在修改后的方法中,我们通过重新调整键的长度并为它们分配一些权重来生成连接两个给定点的随机游动。我们用它来评估几种拓扑聚合物的平均回转半径和流体动力学半径。我们更正了Ref。 [46]流体动力半径与段数的关系,以及回转与流体动力半径的比与段数的关系。估计比率接近从对分布函数的分析假设得出的值。用改进方法评估的多θ链的回转半径与精确的高斯结果一致[48]。我们推导了由四元离子方法生成的随机多边形中键矢量的坐标分布矩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号