首页> 外文期刊>Radar, Sonar & Navigation, IET >Entropy-based motion error correction for high-resolution spotlight SAR imagery
【24h】

Entropy-based motion error correction for high-resolution spotlight SAR imagery

机译:基于熵的高分辨率聚光SAR图像运动误差校正

获取原文
获取原文并翻译 | 示例

摘要

Spotlight synthetic aperture radar (SAR) is an effective way to obtain finer azimuth resolution than the achievement in strip-map mode with the same physical antenna. In general, for spotlight SAR imaging, high azimuth resolution requires long synthetic aperture length. However, in practical airborne applications, because of the inevitable atmospheric turbulence during the long flight trajectory, more complicated motion error is induced that severely degrades the focusing quality of the SAR image. It makes motion compensation (MOCO) for high-resolution spotlight (HR-Spotlight) SAR imagery more difficult than that for other SAR systems. To tackle the HR-Spotlight SAR data contaminated by the complicated motion error, a novel MOCO algorithm based on entropy minimisation is proposed, which is named by minimum entropy MOCO (ME-MOCO). In this approach, by fitting a polynomial to the motion error, the entropy of a focused image is utilised as the optimisation function of the polynomial coefficients. Attributed to damped Newton method, a modified strategy is designed, which results in that the data-driven ME-MOCO algorithm estimates high order polynomial parameters accurately and efficiently. Besides, the proposed algorithm is efficient for the capability of exploiting the fast Fourier transform through the processing chain. Real data experiments and comparisons demonstrate the effectiveness and superiority of the proposal.
机译:与具有相同物理天线的带状图模式相比,聚光合成孔径雷达(SAR)是获得更好的方位角分辨率的有效方法。通常,对于聚光SAR成像,高方位角分辨率需要较长的合成孔径长度。然而,在实际的机载应用中,由于在长航迹期间不可避免的大气湍流,会引起更复杂的运动误差,从而严重降低SAR图像的聚焦质量。与其他SAR系统相比,它使用于高分辨率聚光灯(HR-Spotlight)SAR图像的运动补偿(MOCO)更加困难。针对复杂运动误差污染的HR-Spotlight SAR数据,提出了一种基于最小熵的MOCO算法,即最小熵MOCO(ME-MOCO)。在这种方法中,通过将多项式拟合到运动误差,聚焦图像的熵被用作多项式系数的优化函数。归因于阻尼牛顿法,设计了一种改进的策略,结果是数据驱动的ME-MOCO算法可以准确,高效地估计高阶多项式参数。此外,所提出的算法对于通过处理链利用快速傅里叶变换的能力是有效的。实际数据实验和比较证明了该建议的有效性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号