首页> 外文期刊>Radar, Sonar & Navigation, IET >Sparse time–frequency representation for signals with fast varying instantaneous frequency
【24h】

Sparse time–frequency representation for signals with fast varying instantaneous frequency

机译:瞬时频率快速变化的信号的稀疏时频表示

获取原文
获取原文并翻译 | 示例

摘要

Time-frequency (TF) distributions have been used for providing high-resolution representation in a large number of signal processing applications. However, high resolution and accurate instantaneous frequency (IF) estimation usually depends on the employed distribution and complexity of signal phase function. To ensure an efficient IF tracking for various types of signals, a class of complex-time distributions (CTD) has been developed. These distributions facilitate analysis in cases when standard distributions cannot provide satisfactory results (e.g. for highly non-stationary signal phase). In that sense, an ambiguity-based form of the fourth-order CTD is considered, in a new compressive sensing (CS) context. CS is an intensively growing approach in signal processing that allows efficient analysis and reconstruction of randomly under-sampled signals. In this study, randomly chosen ambiguity domain coefficients serve as CS measurements. By exploiting sparsity in the TF plane, it is possible to obtain highly concentrated IF using just small number of randomly chosen coefficients from the ambiguity domain. Moreover, in noisy signal case, this CS approach can be efficiently combined with the L-statistics producing robust TF representations. Noisy coefficients are first removed using the L-statistics and then reconstructed by using the CS algorithms. The theoretical considerations are illustrated using experimental results.
机译:时频(TF)分布已用于在大量信号处理应用程序中提供高分辨率表示。但是,高分辨率和准确的瞬时频率(IF)估计通常取决于所采用的信号相位函数的分布和复杂性。为了确保对各种类型的信号进行有效的IF跟踪,已经开发了一种复杂时间分布(CTD)。如果标准分布不能提供令人满意的结果(例如,对于高度不稳定的信号相位),这些分布将有助于分析。从这个意义上讲,在新的压缩感测(CS)上下文中考虑了基于歧义的四阶CTD形式。 CS是信号处理中一种不断发展的方法,它可以对随机欠采样的信号进行有效的分析和重建。在这项研究中,随机选择的歧义域系数用作CS度量。通过利用TF平面中的稀疏性,可以使用从模糊域中随机选择的少量系数来获得高度集中的IF。此外,在嘈杂的信号情况下,该CS方法可以有效地与L统计量结合起来,生成鲁棒的TF表示。首先使用L统计量去除噪声系数,然后使用CS算法对其进行重构。使用实验结果说明了理论上的考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号