首页> 外文期刊>Quantum Information Processing >An R || C max Quantum Scheduling Algorithm
【24h】

An R || C max Quantum Scheduling Algorithm

机译:R || C max 量子调度算法

获取原文
获取原文并翻译 | 示例

摘要

Grover’s search algorithm can be applied to a wide range of problems; even problems not generally regarded as searching problems, can be reformulated to take advantage of quantum parallelism and entanglement, and lead to algorithms which show a square root speedup over their classical counterparts. In this paper, we discuss a systematic way to formulate such problems and give as an example a quantum scheduling algorithm for an R||Cmax problem. R||Cmax is representative for a class of scheduling problems whose goal is to find a schedule with the shortest completion time in an unrelated parallel machine environment. Given a deadline, or a range of deadlines, the algorithm presented in this paper allows us to determine if a solution to an R||Cmax problem with N jobs and M machines exists, and if so, it provides the schedule. The time complexity of the quantum scheduling algorithm is ${mathcal{O}(sqrt{M^N})}$ while the complexity of its classical counterpart is ${mathcal{O}(M^N)}$ .
机译:Grover的搜索算法可以应用于各种各样的问题;即使是通常不被认为是搜索问题的问题,也可以重新构造以利用量子并行性和纠缠,并导致算法显示出比经典方法更快的平方根。本文讨论了解决此类问题的系统方法,并以R || Cmax 问题的量子调度算法为例。 R || Cmax 代表一类调度问题,其目标是在无关的并行机环境中找到具有最短完成时间的调度。给定一个截止日期或一定范围的截止时间,本文提出的算法使我们能够确定是否存在N个作业和M台机器的R || Cmax 问题的解决方案,如果存在,则提供时间表。量子调度算法的时间复杂度为$ {mathcal {O}(sqrt {M ^ N})} $,而经典调度算法的时间复杂度为$ {mathcal {O}(M ^ N)} $。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号