首页> 外文期刊>Quantitative Finance >Optimization of N-risky asset portfolios with stochastic variance and transaction costs
【24h】

Optimization of N-risky asset portfolios with stochastic variance and transaction costs

机译:具有随机方差和交易成本的N风险资产组合的优化

获取原文
获取原文并翻译 | 示例

摘要

We examine the intertemporal optimal portfolio selection and consumption rule of an investor with a constant relative risk aversion who faces proportional transaction costs when trading between a risk-free asset and N risky assets. The investor's objective is to maximize the total utility of consumption over a fixed time interval [0, T]. Stochastic dynamic programming is applied to transform the problem into the Hamilton-Jacobi-Bellman equation and perturbation analysis is used to obtain the transaction boundaries and the consumption rule to leading order. We also consider the effect of the stochastic variance on the optimal allocation, where we provide an approximation scheme to determine the transaction boundaries for a portfolio with N risky assets. Numerical examples for a portfolio with a risk-free asset and two risky assets are also provided for constant variance as well as stochastic variance.
机译:我们研究了具有相对风险规避不变的投资者的跨期最优投资组合选择和消费规则,该投资者在无风险资产和N个风险资产之间进行交易时面临成比例的交易成本。投资者的目标是在固定的时间间隔[0,T]内最大化消费的总效用。应用随机动态规划将问题转化为Hamilton-Jacobi-Bellman方程,并使用扰动分析获得交易边界和消费规则至领先顺序。我们还考虑了随机方差对最优分配的影响,我们提供了一种近似方案来确定具有N个风险资产的投资组合的交易边界。还提供了具有无风险资产和两个风险资产的投资组合的数值示例,以说明恒定方差和随机方差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号