首页> 外文期刊>Quality Control, Transactions >Spectrum Sensing With Non-Gaussian Noise Over Multi-Path Fading Channels Towards Smart Cities With IoT
【24h】

Spectrum Sensing With Non-Gaussian Noise Over Multi-Path Fading Channels Towards Smart Cities With IoT

机译:与IOT的智能城市多路径衰落频道的非高斯噪声的光谱感应

获取原文
获取原文并翻译 | 示例

摘要

As the limited communication spectrum can not meet the demand of the exponential growth of intelligent connected devices in the internet of things(IoT) and typical smart city applications, in this paper, we propose a tractable spectrum sensing method based on Rao detection over non-Gaussian noise, such as generalized Gaussian noise(GGN), Gaussian mixture noise(GMN) and symmetric alpha-stable distribution ( $ext{S}lpha ext{S}$ ) noise, multi-path fading channels environment to alleviate the issue of spectrum scarcity. In this method, there are unknown parameters in the multi-path fading channels. When the probability density function (P.D.F.) of non-Gaussian noise has a closed-form expression, the spectrum sensing method based on Rao detection is used. Otherwise the P.D.F. for $ext{S}lpha ext{S}$ noise is estimated firstly by using non-parametric kernel estimation method, which addresses the issue that $ext{S}lpha ext{S}$ noise has no closed-form P.D.F. expression, and then the performance of spectrum sensing is derived based on the theory of Rao detection in multi-path fading channels over typical smart city applications. Simulation results show that the accuracy of estimated P.D.F. for $ext{S}lpha ext{S}$ noise and the performance of spectrum sensing under different $lpha $ values over indoor, outdoor, and vehicle fading channels environment.
机译:由于有限的通信频谱不能满足物联网(物联网)和典型的智能城市应用中智能连接设备指数增长的需求,本文提出了一种基于RAO检测的易诊频谱传感方法。高斯噪声,如广义高斯噪声(GGN),高斯混合噪声(GMN)和对称alpha-稳定分布(<内联 - 公式XMLNS:MML =“http://www.w3.org/1998/math/mathml” XMLNS:XLink =“http://www.w3.org/1999/xlink”> $ text {s} alpha text {s} $ )噪声,多路径衰落通道环境,以缓解频谱稀缺问题。在此方法中,多路径衰落通道中存在未知参数。当非高斯噪声的概率密度函数(P.D.F.)具有闭合形式表达时,使用基于RAO检测的频谱感测方法。否则p.d.f.对于<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ text {s} alpha text {s} $ 首先使用非参数核估计方法来估计,这解决了问题<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ text {s} alpha text {s} $ 噪音没有封闭式PDF表达式,然后基于典型智能城市应用的多路径衰落通道中的RAO检测理论导出频谱感测的性能。仿真结果表明,估计的P.D.F.的准确性。对于<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ text {s} alpha text {s} $ 噪声和频谱感测的性能在不同<内联公式xmlns下:mml =“ http://www.w3.org/1998/math/mathml“xmlns:xlink =”http://www.w3.org/1999/xlink“> $ Alpha $ 室内,室外和车辆衰落通道环境中的值。

著录项

  • 来源
    《Quality Control, Transactions》 |2021年第1期|11194-11202|共9页
  • 作者单位

    School of Electronic Engineering Xi’an Aeronautical University Xi’an China;

    Aerospace Stellar Space Technology Application Company Ltd. Xi’an China;

    School of Electronic Engineering Xi’an Aeronautical University Xi’an China;

    School of Electronic Engineering Xi’an Aeronautical University Xi’an China;

    Science and Technology on Communication Information Security Control Laboratory 36th Research Institute of China Electronics Technology Group Corporation Jiaxing China;

    Science and Technology on Communication Information Security Control Laboratory 36th Research Institute of China Electronics Technology Group Corporation Jiaxing China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sensors; Fading channels; Smart cities; Interference; Gaussian distribution; Kernel; Licenses;

    机译:传感器;褪色渠道;智能城市;干扰;高斯分布;内核;许可证;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号