首页> 外文期刊>Quality Control, Transactions >Pedestrian Motion Trajectory Prediction With Stereo-Based 3D Deep Pose Estimation and Trajectory Learning
【24h】

Pedestrian Motion Trajectory Prediction With Stereo-Based 3D Deep Pose Estimation and Trajectory Learning

机译:基于立体声的3D深度姿态估计和轨迹学习的行人运动轨迹预测

获取原文
获取原文并翻译 | 示例

摘要

Existing methods for pedestrian motion trajectory prediction are learning and predicting the trajectories in the 2D image space. In this work, we observe that it is much more efficient to learn and predict pedestrian trajectories in the 3D space since the human motion occurs in the 3D physical world and and their behavior patterns are better represented in the 3D space. To this end, we use a stereo camera system to detect and track the human pose with deep neural networks. During pose estimation, these twin deep neural networks satisfy the stereo consistence constraint. We adapt the existing SocialGAN method to perform pedestrian motion trajectory prediction from the 2D to the 3D space. Our extensive experimental results demonstrate that our proposed method significantly improves the pedestrian trajectory prediction performance, outperforming existing state-of-the-art methods.
机译:现有的行人运动轨迹预测方法正在学习和预测2D图像空间中的轨迹。在这项工作中,我们观察到,在3D物理世界中发生人类运动并且它们的行为模式在3D空间中出现的人体运动是更有效的,从而在3D空间中学习和预测3D空间中的行人轨迹更有效率。为此,我们使用立体声相机系统来检测和跟踪人类姿势与深神经网络。在姿势估计期间,这些双重神经网络满足立体声一致性约束。我们适应现有的SocialAn方法,从2D到3D空间执行人行动轨迹预测。我们广泛的实验结果表明,我们所提出的方法显着提高了行人轨迹预测性能,优于现有的现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号