首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Pedestrian Trajectory Prediction in Heterogeneous Traffic Using Pose Keypoints-Based Convolutional Encoder-Decoder Network
【24h】

Pedestrian Trajectory Prediction in Heterogeneous Traffic Using Pose Keypoints-Based Convolutional Encoder-Decoder Network

机译:基于姿势关键点的卷积型编码器 - 解码器网络的异构轨迹预测

获取原文
获取原文并翻译 | 示例

摘要

Future pedestrian trajectory prediction offers great prospects for many practical applications. Most existing methods focus on social interaction among pedestrians but ignore the factors that heterogeneous traffic objects (cars, dogs, bicycles, motorcycles, etc.) have significant influence on the future trajectory of a subject pedestrian. Also, the walking direction intention of a pedestrian may be referred by his/her pose keypoints. Considering this, this work proposes to predict a pedestrian's future trajectory by jointly using neighboring heterogeneous traffic information and his/her pose keypoints. To fulfill this, an end-to-end pose keypoints-based convolutional encoder-decoder network (PK-CEN) is designed, in which the heterogeneous traffic and pose keypoints are modeled as input. After training, PK-CEN is evaluated on manifold crowded video sequences collected from the public dataset MOT16, MOT17 and MOT20. Experimental results demonstrate that it outperforms state-of-the-art approaches, in terms of prediction errors.
机译:未来的行人轨迹预测为许多实际应用提供了很大的前景。大多数现有方法都侧重于行人之间的社交互动,而是忽略异构交通对象(汽车,狗,自行车,摩托车等)对对象行人的未来轨迹影响的因素。而且,行人的行走方向意图可以由他/她的姿势关键点引用。考虑到这一点,这项工作建议通过共同使用邻近的异构交通信息和他/她的姿势关键点来预测行人的未来轨迹。为了满足这一点,设计了基于端到端的姿势关键点的卷积编码器 - 解码器网络(PK-CEN),其中异构流量和姿势关键点被建模为输入。在培训之后,PK-CEN在从公共数据集MOT16,MOT17和MOT20收集的歧管拥挤的视频序列上进行评估。实验结果表明,就预测误差而言,它优于最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号