首页> 外文期刊>Quality Control, Transactions >Real-Time Cloud Visual Simultaneous Localization and Mapping for Indoor Service Robots
【24h】

Real-Time Cloud Visual Simultaneous Localization and Mapping for Indoor Service Robots

机译:适用于室内服务机器人的实时云视觉同时定位和映射

获取原文
获取原文并翻译 | 示例

摘要

Unlike traditional industrial robots, indoor service robots are usually required to possess high intelligence, such as the skills of flexible moving, precise spacial perceiving. And high intelligence is always accompanied by consuming complicated and expensive computation resources. One solution for indoor service robots is centralization of expensive computation resource so that it is possible to design a low cost client with a high-intelligence brain. However, as a fundamental intelligence function for mobile indoor robots, if a real-time visual Simultaneously Localization and Mapping (vSLAM) system is split into client and brain, it will be confronted with new challenges, such as the barrier of instant data sharing and performance degradation brought by network delay inbetween. To solve the problem, we focus on a framework and approach of cloud-based visual SLAM in this paper, and provide an efficient solution to offload the expensive computation and reduce the cost of robot clients. The integrated system is distributed in a 3-level Cloud with light-weight tracking, high precision dense mapping, and map sharing. Based on recent excellent algorithms, our system is able to run a real-time sparse tracking on the client, and a real-time dense mapping on the cloud server, which outputs an explicit 3D dense map. Only keyframes are sent to the local cloud center to reduce the network bandwidth requirement. Dense geometric pose estimation besides feature-based methods is computed to make the system resistant to feature-less indoor scenes. The camera poses associated with keyframes are optimized on the local computing cloud center, and are sent back to the client to decrease the trajectory drift. We evaluate the system on the Technical University of Munich (TUM) datasets, Imperial College London and National University of Ireland Maynooth (ICL-NUIM) datasets, and the real data captured by our robot in terms of visual odometry on the client side and dense maps generated on the server cloud. Qualitative and quantitative experiments show our cloud visual SLAM system is able to bear the network delay in Local Area Network (LAN), and it is an efficient vSLAM solution for indoor service robots with high intelligence from a centric brain.
机译:与传统的工业机器人不同,通常需要室内服务机器人拥有高智力,例如灵活的动作技能,精确的空间感知。高智能始终伴随着消耗复杂和昂贵的计算资源。一个用于室内服务机器人的解决方案是昂贵的计算资源的集中化,因此可以设计具有高智力大脑的低成本客户端。然而,作为移动室内机器人的基本智能功能,如果将实时视觉同时定位和映射(vslam)系统分成客户端和大脑,则会面临新的挑战,例如即时数据共享的屏障和网络延迟中的性能劣化。为了解决这个问题,我们专注于本文的基于云的视觉流动的框架和方法,并提供了一种有效的解决方案来卸载昂贵的计算并降低机器人客户的成本。集成系统分布在具有轻量级跟踪,高精度密集映射和地图共享的3级云中。基于最近的优秀算法,我们的系统能够在客户端上运行实时稀疏跟踪,以及在云服务器上实时密集映射,输出显式3D密集图。只有关键帧发送到本地云中心,以减少网络带宽要求。除了基于特征的方法之外,致密的几何姿态估计是计算的,使系统能够抵抗特征的室内场景。与关键帧关联的相机构成在本地计算云中心上优化,并被发送回客户端以减少轨迹漂移。我们评估慕尼黑技术大学(Tum)数据集,帝国学院,伦敦帝国大学和国立爱尔兰Maynooth(ICL-Nuim)数据集的系统,以及我们的机器人在客户端的视觉径管方面捕获的真实数据在服务器云上生成的映射。定性和定量实验表明,我们的云视觉SLAM系统能够在局域网(LAN)中承担网络延迟,它是一个高效的VSLAM解决方案,用于来自中心大脑的高智力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号