首页> 外文期刊>Progress in Oceanography >Deep sea animal density and size estimated using a Dual-frequency IDentification SONar (DIDSON) offshore the island of Hawaii
【24h】

Deep sea animal density and size estimated using a Dual-frequency IDentification SONar (DIDSON) offshore the island of Hawaii

机译:使用夏威夷岛附近的双频识别声纳(DIDSON)估算深海动物的密度和大小

获取原文
获取原文并翻译 | 示例

摘要

Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators' distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m(3) and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases.
机译:形成深海散射层(DSL)的浮游动物代表着浮游动物和顶级捕食者之间食物网中的重要链接。虽然估计DSL的组成,密度和位置对于理解近生生态系统动力学和预测顶级捕食者的分布很重要,但DSL的组成和密度通常是从拖网中估算出来的,拖网可能会因挤压,回避和与齿轮相关而出现偏差偏见。取而代之的是,DSL的位置和生物量可以通过主动声学技术进行估算,尽管估算通常是合计的,而不考虑大小或分类群特定信息。在公海中,我们首次使用DIDSON声纳来表征DSL中的动物。确定了沿夏威夷岛科纳海岸不同深度和位置的动物的数字密度和长度的估计值。声纳安装在分析仪上,在DSL的下方和内部收集数据。总共计数了7068只动物并确定了大小。我们估计数值密度范围从1到7动物/ m(3),检测到的个体长达3 m。这些数字密度比拖网估计的数字密度高几个数量级,动物的平均体型也更大。使用混合模型来表征动物的数字密度和长度,这是所采样的深海层,位置,一天中的时间和一年中的某天的函数。动物的数字密度和长度随月份变化,数字密度也是深度的函数。 DIDSON被证明是用于海洋/深海估计海洋动物,特别是大型动物的数字密度和大小的一个很好的工具。需要做进一步的工作来理解这种方法与标准回波技术获得的体积反向散射的估计,通过其他采样方法获得的密度测量值以及精确评估采样偏差之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号