首页> 外文期刊>Progress in computational fluid dynamics >A high order MOOD method for compressible Navier-Stokes equations: application to hypersonic viscous flows
【24h】

A high order MOOD method for compressible Navier-Stokes equations: application to hypersonic viscous flows

机译:可压缩Navier-Stokes方程的高阶MOOD方法:在高超声速粘性流中的应用

获取原文
获取原文并翻译 | 示例

摘要

A very high-order finite volumes numerical method is designed for the simulation of compressible Navier-Stokes equations on 2D unstructured meshes. This scheme is based on the MOOD methods described for Euler's equations, it is an interesting alternative in the design of a scheme adapted to accurate simulations of flows with discontinuities, in all the domain. The main originality of our method is to include the viscosity/diffusion terms of Navier-Stokes equations. These terms may be discretised with the same accuracy of convection terms, though we will restrict ourselves to second-order here. It permits to treat the hypersonic viscous interactions with high accuracy. Numerical experiments are conducted to demonstrate the performance of the proposed method.
机译:设计了一种非常高阶的有限体积数值方法,用于在二维非结构化网格上模拟可压缩的Navier-Stokes方程。该方案基于针对Euler方程描述的MOOD方法,在设计用于在所有域中精确模拟具有不连续性的流的方案时,它是一个有趣的选择。我们方法的主要创新之处在于包括Navier-Stokes方程的粘度/扩散项。这些项可能以对流项的相同精度离散化,尽管在这里我们将自己限制为二阶。它可以高精度地处理高超声速粘性相互作用。进行了数值实验,以证明该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号