首页> 外文期刊>Proceedings of the IEEE >Overview of electrical processes in fractal geometry: from electrodynamic relaxation to superconductivity
【24h】

Overview of electrical processes in fractal geometry: from electrodynamic relaxation to superconductivity

机译:分形几何学中的电过程概述:从电动弛豫到超导

获取原文
获取原文并翻译 | 示例

摘要

The consequences of the parameterization of the fractal set on the electrodynamics of this set are analyzed. The relevance of scaling properties to electrochemical, dielectric, and magnetic relaxations is considered with a special emphasis on the use of noninteger derivative operators in electromagnetism and superconductivity. In electromagnetism, the above analysis includes a brief overview of the main results already obtained, focusing especially on the introduction of dissipative terms in the equation of propagation and on the generalized form of the uncertainty principle in fractal media. The new Laplacian and d'Alembertian operators are evoked as well as the scale relativity on which this new analysis is founded. For superconductivity, the analysis introduces a geometrical interpretation founded on frustration acting not only on topology but on the metric of the space-time in a particular type of fractal geometry. Although this point of view may appear as a breakthrough in the theory of superconductors, the model offers some relations with the theory of fractional statistics and the theory of Anyons.
机译:分析了分形集的参数化对该集的电动力学的影响。考虑到结垢性质与电化学,介电和磁弛豫的相关性,并特别强调在电磁学和超导性中使用非整数导数算子。在电磁学中,以上分析简要概述了已经获得的主要结果,尤其着重于在传播方程中引入耗散项以及分形介质中不确定性原理的广义形式。新的拉普拉斯算子和d'Alembertian算子以及这种新分析所基于的规模相对论都引起了人们的注意。对于超导性,分析引入了一种基于沮丧的几何解释,该沮丧不仅作用于拓扑,而且作用于特定类型的分形几何中的时空度量。尽管这种观点可能是超导体理论上的突破,但该模型与分数统计理论和Anyons理论有一定关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号