首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer
【24h】

Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer

机译:距离测量揭示了脂质双层中原核电压门控离子通道的常见拓扑

获取原文
获取原文并翻译 | 示例
       

摘要

Voltage-dependent ion channels are fundamental to the physiology of excitable cells because they underlie the generation and propagation of the action potential and excitation-contraction coupling. To understand how ion channels work, it is important to determine their structures in different conformations in a membrane environment. The validity of the crystal structure for the prokaryotic K+ channel, K(V)AP, has been questioned based on discrepancies with biophysical data from functional eukaryotic channels, underlining the need for independent structural data under native conditions. We investigated the structural organization of two prokaryotic voltage-gated channels, NaChBac and K(V)AP, in liposomes by using luminescence resonance energy transfer. We describe here a transmembrane packing representation of the voltage sensor and pore domains of the prokaryotic Na channel, NaChBac. We find that NaChBac and K(V)AP share a common arrangement in which the structures of the Na and K selective pores and voltage-sensor domains are conserved. The packing arrangement of the voltage-sensing region as determined by luminescence resonance energy transfer differs significantly from that of the K(V)AP crystal structure, but resembles that of the eukaryotic K(V)1.2 crystal structure. However, the voltage-sensor domain in prokaryotic channels is closer to the pore domain than in the K(V)1.2 structure. Our results indicate that prokaryotic and eukaryotic channels that share similar functional properties have similar helix arrangements, with differences arising likely from the later introduction of additional structural elements.
机译:电压依赖性离子通道是可激发细胞生理的基础,因为它们是动作电位和激发-收缩耦合的产生和传播的基础。要了解离子通道的工作原理,重要的是确定膜环境中不同构型的离子通道的结构。基于功能性真核生物通道的生物物理数据的差异,对原核生物K +通道晶体结构的有效性提出了质疑,强调在自然条件下需要独立的结构数据。我们利用发光共振能量转移研究了脂质体中两个原核电压门控通道NaChBac和K(V)AP的结构组织。我们在这里描述电压传感器和原核Na通道NaChBac的孔域的跨膜堆积表示。我们发现NaChBac和K(V)AP共享一个共同的安排,其中Na和K选择性孔和电压传感器域的结构是保守的。由发光共振能量转移确定的电压感测区域的堆积布置与K(V)AP晶体结构的堆积布置显着不同,但与真核K(V)1.2晶体结构的堆积布置相似。但是,与K(V)1.2结构相比,原核通道中的电压传感器域更接近孔域。我们的研究结果表明,具有相似功能特性的原核和真核通道具有相似的螺旋排列,并且可能由于后来引入其他结构元件而引起差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号