首页> 外文期刊>Proceedings of the institution of mechanical engineers >Enhancement of vehicle braking performance on split- roads using optimal integrated control of steering and braking systems
【24h】

Enhancement of vehicle braking performance on split- roads using optimal integrated control of steering and braking systems

机译:通过优化的转向和制动系统集成控制来提高分路车辆的制动性能

获取原文
获取原文并翻译 | 示例
       

摘要

Shorter stopping distance and less deviation from the straight line are two requirements of vehicle safe braking on split-mu roads. The first one is achieved by controlling the longitudinal slip of each wheel at its optimum value calculated by road conditions. However, in order to directly control the vehicle directional stability, a new multivariable controller is optimally developed for integrated active front steering (AFS) and direct yaw moment control. In an efficient way to manage two control inputs, the weights of the integrated optimal control law are online determined by fuzzy logics. These logics are defined using the stability index obtained by the phase plane analysis of nonlinear vehicle model. In this way, the required external yaw moment can be calculated for different driving conditions to only compensate the drawback of AFS for stabilising the vehicle system. The minimum usage of stabilising external yaw moment leads to the less reduction of maximum achievable braking forces of one side wheels and results the shorter stopping distance. By determination of the weighs in limit conditions, the integrated control law easily leads to the stand-alone braking control law. The simulation results carried out using a validated vehicle model demonstrate that the integrated control system has a better braking performance compared with the stand-alone braking system, reported in literature, to attain the shorter stopping distance with less lateral deviation on split-mu roads.
机译:较短的制动距离和较小的直线偏差是在多亩公路上车辆安全制动的两个要求。第一个是通过将每个车轮的纵向滑移控制在由道路状况计算出的最佳值来实现的。但是,为了直接控制车辆的方向稳定性,针对集成主动前转向(AFS)和直接横摆力矩控制进行了优化开发的新型多变量控制器得到了优化。以一种有效的方式来管理两个控制输入,集成的最优控制律的权重由模糊逻辑在线确定。使用通过非线性车辆模型的相平面分析获得的稳定性指标定义这些逻辑。以此方式,可以针对不同的驾驶条件来计算所需的外部偏航力矩,从而仅补偿用于稳定车辆系统的AFS的缺点。稳定外部偏航力矩的最小使用导致一侧轮的最大可达到制动力的减小较少,并且导致较短的制动距离。通过确定极限条件下的重量,集成控制定律很容易得出独立的制动控制定律。使用经过验证的车辆模型进行的仿真结果表明,与文献中报道的独立制动系统相比,集成控制系统具有更好的制动性能,从而可以实现更短的制动距离,并在分亩公路上实现较小的侧向偏离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号