首页> 外文期刊>Probabilistic engineering mechanics >A deep learning solution approach for high-dimensional random differential equations
【24h】

A deep learning solution approach for high-dimensional random differential equations

机译:高维随机微分方程的深度学习解决方案

获取原文
获取原文并翻译 | 示例

摘要

Developing efficient numerical algorithms for the solution of high dimensional random Partial Differential Equations (PDEs) has been a challenging task due to the well-known curse of dimensionality. We present a new solution approach for these problems based on deep learning. This approach is intrusive, entirely unsupervised, and mesh-free. Specifically, the random PDE is approximated by a feed-forward fully-connected deep residual network, with either strong or weak enforcement of initial and boundary constraints. Parameters of the approximating deep neural network are determined iteratively using variants of the Stochastic Gradient Descent (SGD) algorithm. The satisfactory accuracy of the proposed approach is numerically demonstrated on diffusion and heat conduction problems, in comparison with the converged Monte Carlo-based finite element results.
机译:由于众所周知的维数诅咒,开发用于求解高维随机偏微分方程(PDE)的有效数值算法一直是一项艰巨的任务。我们基于深度学习提出了针对这些问题的新解决方案。这种方法是侵入性的,完全不受监督,并且没有网格。具体而言,随机PDE由前馈完全连接的深度残差网络进行近似,在初始约束和边界约束的强弱实施下。近似深度神经网络的参数是使用随机梯度下降(SGD)算法的变体迭代确定的。与基于蒙特卡洛方法的有限元结果相比,该方法在扩散和热传导问题上具有令人满意的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号