首页> 外文期刊>Power Systems, IEEE Transactions on >ARIMA-Based Time Series Model of Stochastic Wind Power Generation
【24h】

ARIMA-Based Time Series Model of Stochastic Wind Power Generation

机译:基于ARIMA的随机风力发电时间序列模型

获取原文

摘要

This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power generation.
机译:本文提出了一种基于自回归综合移动平均(ARIMA)过程的随机风能模型。该模型考虑了随机风力发电的非平稳性和物理极限。该模型基于丹麦Nysted海上风电场一年的风电测量结果而构建。提出的受限ARIMA(LARIMA)模型引入了一个限制器,并通过平均水平,时间相关性和行驶噪声来表征随机风力发电。针对时间相关性和概率分布方面的测量对模型进行了验证。在时间相关性,概率分布和模型参数数量方面,LARIMA模型优于基于一阶过渡矩阵的离散Markov模型。提议的LARIMA模型进一步扩展为包括随机风力发电量的每月变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号