首页> 外文期刊>Power Systems, IEEE Transactions on >New Local Search Methods for Improving the Lagrangian-Relaxation-Based Unit Commitment Solution
【24h】

New Local Search Methods for Improving the Lagrangian-Relaxation-Based Unit Commitment Solution

机译:改进基于拉格朗日松弛的单位承诺解决方案的新本地搜索方法

获取原文

摘要

The unit commitment problem (UCP) for an electric power system is used to determine the schedules of power units that minimize the total production cost over a planning horizon while satisfying the load demand, spinning reserve, and operating constraints of individual units. When the number of units is large and the planning horizon is long, the UCP is a large-scale problem, for which an exact optimal solution is difficult to obtain within a reasonable computation time. The Lagrangian relaxation (LR) method is known to be useful for large-scale UCPs. The LR method first solves the dual problem of the UCP, and then constructs a feasible solution from the dual solution by using some heuristics. In this paper, we propose new local search (LS) methods for improving the feasible solution obtained by the LR method. We define the neighborhood of the local search as the feasible set in which the on-off states of all but one or two units are fixed. The neighborhood search can then be executed by solving the one unit or two UCPs, which are efficiently solved by dynamic programming if no ramp-rate limit constraint exists. Numerical results show that the proposed LS methods can find feasible schedules for which the costs are lower than those obtained by the existing methods. The applicability of the proposed methods to long-term UCPs is also demonstrated.
机译:电力系统的机组承诺问题(UCP)用于确定在计划范围内将总生产成本降至最低,同时又满足单个机组的负荷需求,旋转储备和运行约束的机组时间表。当单位数量大且计划期很长时,UCP是一个大问题,在合理的计算时间内很难获得精确的最优解。众所周知,拉格朗日弛豫(LR)方法可用于大规模UCP。 LR方法首先解决UCP的对偶问题,然后使用启发式方法从对偶解中构造出可行的解决方案。在本文中,我们提出了新的局部搜索(LS)方法,以改进通过LR方法获得的可行解。我们将局部搜索的邻域定义为其中一个或两个单元之外的所有单元的开关状态均固定的可行集。然后可以通过求解一个或两个UCP来执行邻域搜索,如果不存在斜坡速率限制约束,则可以通过动态编程有效地解决这些问题。数值结果表明,所提出的最小二乘方法能够找到可行的进度表,其成本要低于现有方法。还证明了所提出的方法对长期UCP的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号