首页> 外文期刊>Power Systems, IEEE Transactions on >Short-Term Load Forecasting: Similar Day-Based Wavelet Neural Networks
【24h】

Short-Term Load Forecasting: Similar Day-Based Wavelet Neural Networks

机译:短期负荷预测:基于相似天的小波神经网络

获取原文

摘要

In deregulated electricity markets, short-term load forecasting is important for reliable power system operation, and also significantly affects markets and their participants. Effective forecasting, however, is difficult in view of the complicated effects on load by a variety of factors. This paper presents a similar day-based wavelet neural network method to forecast tomorrow''s load. The idea is to select similar day load as the input load based on correlation analysis, and use wavelet decomposition and separate neural networks to capture the features of load at low and high frequencies. Despite of its “noisy” nature, high frequency load is well predicted by including precipitation and high frequency component of similar day load as inputs. Numerical testing shows that this method provides accurate predictions.
机译:在放松管制的电力市场中,短期负荷预测对于可靠的电力系统运行非常重要,并且还会严重影响市场及其参与者。然而,鉴于各种因素对负荷的复杂影响,有效的预测是困难的。本文提出了一种类似的基于天的小波神经网络方法来预测明天的负荷。想法是基于相关性分析,选择相似的日负荷作为输入负荷,并使用小波分解和独立的神经网络来捕获低频和高频负荷的特征。尽管具有“嘈杂”性质,但通过将降水量和类似日负荷的高频分量包括在内作为输入,可以很好地预测高频负荷。数值测试表明,该方法可提供准确的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号