首页> 外文期刊>Engineering Applications of Artificial Intelligence >Enhanced ensemble structures using wavelet neural networks applied to short-term load forecasting
【24h】

Enhanced ensemble structures using wavelet neural networks applied to short-term load forecasting

机译:使用小波神经网络的增强集成结构应用于短期负荷预测

获取原文
获取原文并翻译 | 示例

摘要

Load forecasting implies directly in financial return and information for electrical systems planning. A framework to build wavenet ensemble for short-term load forecasting is proposed in this work. For this purpose, data are first transformed for trend removal and normalization, then an optimal time window is calculated and a subset of features is selected. The bootstrapping, cross-validation like, inputs decimation, constructive selection, simple mean, median, mode and stacked generalization algorithms are used for the ensemble aggregation of wavenet learners. Predictions are realized through one step ahead forecasting strategy. Hourly load values from Italy in 2015 and the GEFCom competition (Global Energy Forecasting Competition) 2012 are used to test and compare the proposed framework with existing similar forecasting techniques such as a multilayer perceptron neural network with sigmoid activation functions in the hidden layer, a single wavenet, a regression tree approach, and the forecasting based on the last week mean. Cross-validated results using 10-folds demonstrate the effectiveness of the proposed forecasting framework based on wavenet ensemble, overcoming performance of the models compared.
机译:负荷预测直接包含财务回报和电气系统规划信息。在这项工作中,提出了构建用于短期负荷预测的波网集合的框架。为此,首先对数据进行转换以去除趋势并进行归一化,然后计算最佳时间窗口并选择特征子集。自举,交叉验证(如输入抽取,构造选择,简单均值,中位数,众数和堆积泛化算法)用于wavenet学习者的集合聚合。预测是通过提前一步的预测策略来实现的。来自2015年意大利的小时负荷值和2012年GEFCom竞赛(全球能源预测竞赛)用于测试和比较建议的框架与现有类似的预测技术,例如在隐蔽层中具有S型激活功能的多层感知器神经网络,单个wavenet,回归树方法以及基于上周平均值的预测。使用10倍的交叉验证结果证明了基于波网集成的拟议预测框架的有效性,克服了模型的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号