首页> 外文期刊>Power Systems, IEEE Transactions on >A Modified TLS-ESPRIT-Based Method for Low-Frequency Mode Identification in Power Systems Utilizing Synchrophasor Measurements
【24h】

A Modified TLS-ESPRIT-Based Method for Low-Frequency Mode Identification in Power Systems Utilizing Synchrophasor Measurements

机译:利用同步相量测量的电力系统低频模式识别的基于TLS-ESPRIT的改进方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a method for online identification of modes corresponding to low-frequency oscillations in a power system. The proposed method has considered the effect of colored Gaussian noise produced due to filters used for signal preprocessing. In order to mitigate the effect of colored Gaussian noise, the paper first proposes a modified total least square estimation of signal parameters via rotational invariance techniques (TLS-ESPRIT) that utilizes first and second rotational shift invariance properties of the signal. In the next step, the modified TLS-ESPRIT utilizes the signal transformed in an orthogonal basis. The proposed method has been compared with the improved Prony, the TLS-ESPRIT and the fourth-order cumulant-based TLS-ESPRIT (4CB-TLS-ESPRIT) using a test signal for identification of the modes at different noise levels. Robustness of the proposed method is established in the presence of colored Gaussian noise through Monte Carlo simulations. Estimation of modes for a two-area power system, using the proposed method, is carried out in the present work. Comparison of the proposed method with other methods is also performed on real-time probing test data obtained from the Western Electricity Coordinating Council (WECC) network.
机译:本文提出了一种在线识别电力系统中低频振荡模式的方法。所提出的方法已经考虑了由于用于信号预处理的滤波器而产生的彩色高斯噪声的影响。为了减轻彩色高斯噪声的影响,本文首先提出了一种利用旋转不变技术(TLS-ESPRIT)修改信号总最小二乘估计的方法,该技术利用信号的第一和第二旋转移位不变特性。在下一步中,修改后的TLS-ESPRIT使用以正交为基础变换的信号。使用测试信号识别不同噪声水平的模式,将所提出的方法与改进的Prony,TLS-ESPRIT和基于四阶累积量的TLS-ESPRIT(4CB-TLS-ESPRIT)进行了比较。通过蒙特卡洛模拟,在存在彩色高斯噪声的情况下建立了所提出方法的鲁棒性。在本工作中,使用所提出的方法对两区域电力系统的模式进行了估计。还对从西部电力协调委员会(WECC)网络获得的实时探测测试数据进行了该方法与其他方法的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号