首页> 外文学位 >Power System Dynamic Modeling and Synchrophasor Measurements
【24h】

Power System Dynamic Modeling and Synchrophasor Measurements

机译:电力系统动态建模和同步相量测量

获取原文
获取原文并翻译 | 示例

摘要

Electric power is fully interwoven into the fabric of American life. Its loss for extended periods has profound impacts upon public safety, health and welfare. The power system has been termed the most complex machine built by man. Not surprisingly, the measures to address the range of power system downtime causes are as diverse as the causes themselves. One important arc of effort is providing power system operators with full knowledge of the system's operating state, timely warning when changing conditions threaten system stability, and tools guiding control actions to maintain stable operations.;This research is motivated, in part, by the need to explore opportunities for leveraging nascent synchrophasor data streams against known power system stability challenges. Over the past half-decade, power system operators have aggressively installed large networks of phasor measurement units (PMUs) and phasor data concentrators (PDCs) across the United States and Canada. Today, the synchrophasor data network has reached a state of maturity that opens the door to useful application.;This dissertation investigates power system stability along three lines of effort. The first two efforts address steady-state power system stability---specifically methods for assessing system vulnerabilities arising from the phase angle difference between two buses connected by a transmission line. The third effort investigates the information that can be gleaned from synchrophasor measurements during a system's dynamic system response to changing system conditions.;The first line of investigation extends steady-state distribution factor theory. Distribution factors are computed from a known non-linear power system load flow solution. They provide a computationally light method for estimating new system conditions under different operating circumstances. Distribution factors are extremely useful for very rapidly screening the impact of unexpected changes in power system configuration---e.g. a transmission line dropping out of service due to environmental conditions. The Line Outage Angle Factor (LOAF) developed herein provides a method for fast computation of bus voltage angle changes after a line outage. The Line Outage Generator Factor (LOGF) modifies the simulated circuit topology to include synchronous machine transient reactances, enabling rapid screening of operating states in which line opening (or re-closure) risks damaging equipment. The LOAF and LOGF provide promising results in MATLAB simulation of the Western System Coordinating Council 3-Machine, 9-Bus System.;The second investigative line seeks to develop a Thevenin equivalent model to be used in tandem with synchrophasor data streams to provide real-time bus angle difference information for buses connected by a transmission line. The appeal is that real-time bus angle difference information could be computed on-site and very rapidly---and significantly, independent of other network bus measurements. The results show that developing a Thevenin equivalent that provides a useful angle difference measure often works well on paper, but is challenging using actual synchrophasor data. Efforts to develop a Thevenin equivalent using Monte Carlo methods show promise, but require further investigation.;The third line of effort shifts to investigate the useful information that a PMU can produce during a power system disturbance event. A synchrophasor is defined at a specific frequency, i.e. the system steady-state operating frequency. Thus a PMU produces a data stream recording power system changes progressing slower than the nominal system frequency; consequently, this is an "off-label" synchrophasor data application. The test system is a generator with electrical and mechanical controls connected by a pair of identical transmission lines to an infinite bus. The synchronous generator is modeled as a three-damper-winding synchronous machine. A MATLAB simulation was written to simulate both the full 14 dynamic state and the reduced order 11 dynamic state system models. A Real-Time Digital Simulator (RTDS) simulation emulating the test system provides the capability to produce real-time analog generator terminal waveforms to be sampled by a commercial off-the-shelf PMU to produce synchrophasor data. We find that the RTDS generated synchrophasor data stream is similar to the MATLAB reduced order model voltage and current generator terminal data in the dqo reference frame---reflecting parallel, but distinct, filtering processes.
机译:电力完全融入了美国人的生活。长期的损失对公共安全,健康和福利产生深远影响。电力系统被称为人类建造的最复杂的机器。毫不奇怪,解决电力系统停机原因范围的措施与原因本身一样多样。一个重要的工作方向是为电力系统运营商提供有关系统运行状态的全面知识,在条件变化威胁到系统稳定性时及时发出警告以及指导控制措施以保持稳定运行的工具。;本研究的部分动机是出于需求探索利用新生的同步相量数据流应对已知电力系统稳定性挑战的机会。在过去的五年中,电力系统运营商在美国和加拿大积极安装了大型的相量测量单元(PMU)和相量数据集中器(PDC)网络。如今,同步相量数据网络已达到成熟的状态,为有用的应用打开了大门。;本文从三个方面来研究电力系统的稳定性。前两个工作解决了稳态电力系统的稳定性-专门用于评估由传输线连接的两个母线之间的相角差异引起的系统漏洞的方法。第三部分研究了在系统对变化的系统条件进行动态系统响应时,可从同步相量测量中收集的信息。;第一类研究扩展了稳态分布因子理论。分布系数是根据已知的非线性电力系统潮流计算得出的。它们提供了一种计算简便的方法,用于估算不同操作环境下的新系统条件。分布系数对于非常快速地检查电源系统配置中意外变化的影响非常有用-例如传输线由于环境条件而停运。本文开发的线路中断角因数(LOAF)提供了一种用于在线路中断后快速计算总线电压角变化的方法。线路中断产生器因数(LOGF)修改了模拟电路拓扑,以包含同步的机器瞬态电抗,从而能够快速筛选运行状态,在这些状态下,线路断开(或重新闭合)会损坏设备。 LOAF和LOGF在Western系统协调委员会3机9总线系统的MATLAB仿真中提供了可喜的结果。第二条研究线旨在开发一个戴维南等效模型,与同步相量数据流一起使用,以提供真实的通过传输线连接的总线的时间总线角度差信息。吸引人的是,实时总线角度差信息可以在现场且非常快速地进行计算,而且很明显与其他网络总线测量结果无关。结果表明,开发出可以提供有用的角度差量度的戴维宁等效物在纸上通常效果很好,但是使用实际的同步相量数据则具有挑战性。使用蒙特卡洛方法开发戴维宁等效物的努力显示出希望,但需要进一步研究。;第三方面的努力转向研究电力系统扰动事件中PMU可以产生的有用信息。同步相量定义为特定频率,即系统稳态工作频率。因此,PMU产生了一个数据流,记录了功率系统的变化,其变化速度慢于标称系统频率。因此,这是一个“标签外”同步相量数据应用程序。该测试系统是一台具有电气和机械控制装置的发电机,该装置通过一对相同的传输线连接到无限母线。同步发电机建模为三阻尼绕组同步电机。编写了MATLAB仿真程序,以仿真完整的14个动态状态和降阶11个动态状态系统模型。仿真测试系统的实时数字仿真器(RTDS)仿真提供了生成实时模拟发生器终端波形的功能,该波形由商用现成的PMU进行采样以生成同步相量数据。我们发现RTDS生成的同步相量数据流类似于dqo参考帧中的MATLAB降阶模型电压和电流发生器终端数据-反映了并行但截然不同的滤波过程。

著录项

  • 作者

    Reinhard, Karl E.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Electrical engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号